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The information and data given here are based on our current knowledge and experience. This does not relieve the purchaser of our products from incoming inspection. The information and data do not describe the suitability of the product for a specific application. 
Composition - and durability statements - as well as any other statements are not to be considered as a warranty.
The values contained herein are based on analysis/testing of laboratory test specimens and represent data that fall within the normal range of properties for natural materials, unless stated otherwise. Colorants and additives may alter properties.
This information is provided as a service for comparative purposes only and in no way constitutes any product specification or the like. For component design the data contained herein are applicable as guideline only.
® registered trademark of BASF.



Covered in this section

3

Why convert to plastics?
Basic material properties / material selection

Basic thermoplastic design

Designing with structural ribs

GF resins / fiber orientation / CAE examples 

Long-term properties / gating  



Why convert to plastic?
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 Cost reduction

 Lower price for consumer, increased margin / volume for OEM

 Weight reduction

 Key requirement for automotive, hand power tools and other 
industries

 Improved chemical / corrosion resistance

 Eliminates the possibility of rust and the need for painting

 Improved aesthetics

 Allows for molded-in-color

 Part consolidation

 Reduce assembly time and cost



Why convert to plastic – Benefits of plastics over metals
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 Greater design flexibility

 Combine parts, color-code key parts, add textures, etc. 

 Increased tool life

 Up to 6 times longer tool life over die cast

 Increased strength to weight ratio

 Lower density allows part to be designed with increased part strength

 Reduced secondary operations

 No need for deburring, polishing, etc. 

 Warmer to the touch

 Reduced thermal conductivity allows part to feel “warm”
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Basic material properties – Comparison 
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Good for initial material screening but rarely used in design

Material selection – BASF Ultramid® B3WG6 datasheet 
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LoadsImpact 

FatigueWear & 
Abrasion

Life 
Cycle 

Requirement

Mating 
Components

Failure 
Mode 

(Safety)
Creep Thermal

CLTE

Functional considerations – Critical to material selection
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Environmental design considerations – Critical to material selection

Temperature

Humidity

Chemical 
Exposure

UV 
Exposure

Thermal 
Creep

Thermal 
Cycling

Wind
Fatigue



Material selection – Engineering plastics
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Acetal
POM

Polyester
PBT / PET

Nylon 
(PA6, PA66, PPA)

 High strength
 Excellent 

toughness

 Excellent 
dimensional 
stability

 Good electrical 
properties

 Excellent sliding 
and friction 
properties

 Broad chemical 
resistance

 Very high heat 
resistance

 Excellent 
chemical 
resistance

Polysulfone
PSU, PES, PPSU
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What is design?
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 Definition:

To create, execute or construct a plan that improves parts or details

i.e., “Make something better”
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Basic steps in plastic design
1. Define part FUNCTIONS

2. SKETCH part shape along with critical sections

3. Define applied LOADS (static, fatigue, impact, abrasion)

4. Estimate value of STRESSES by hand calculations

5. Investigate potential MATERIAL options

6. Determine WALL THICKNESS starting point

7. Conduct initial STRESS ANALYSIS by CAE

8. Conduct MOLD FLOW by CAE

9. OPTIMIZE the design based on CAE results

10. Make and test PROTOTYPE parts

11. REVISE design based on test results



For a successful engineered application in thermoplastics
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Material

DesignProcessing

Environment



Example of designing for extreme environmental situation

Datasheet Properties:

-30% Humidity at 
23C

-25% High Temp 
80C

-10% UV Exposure 
3-30 years

-10% Aging 
15-30 years

= 2500 MPa
42.5 MPa 

Conclusion: Fully understand the application’s 
environment before selecting a material 
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CAMPUS* Database

*CAMPUS (Computer Aided Material Preselection by Uniform Standards)

Metals Exhibit
 Higher Strength & Stiffness 

Metal

Structural Plastic

Strain (%)

UTS

Yield Point

Stress strain curve overlay
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BASF Ultramid® A3WG10 LFX (General Trend with all Plastics)

Stress at Break Elongation % at Break

-20°C
• Increased strength 
• Decreased elongation

80°C 
• Decrease strength 
• Increased elongation

Balancing strength and elongation with temperature extremes
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Plastic 101 design tips
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 Things to remember about plastics
 Basic ‘Rules of Thumb’



Uniform wall thickness
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Conclusion: Largest Radius the Design will Allow

= 9600 psi 
= 24000 psi 

Corner stress concentration 
– Cantilever Beam example
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Gate
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Weld Line
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Glass filled polymers – Fiber orientation
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.457

.080
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.620

1.00

Aluminum
E = 10.3 x 106

I = 0.0049
E x I = 5.08 x 104

A = 0.283

Polyamide (33% GR)
E = 1.2 x 106

I = 0.0424
E x I = 5.08 x 104

A = 0.17

Steel
E = 30 x 106

I = 0.0017
E x I = 5.08 x 104

A = 0.198

Equivalent Stiffness
IPlastic >>> IMETALS

Rigidity = E x I
E = Modulus
I = Moment of Inertia

Equivalent stiffness example
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Straight Rib
Cross Rib
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Add ribs to increase structure



Optimal Rib Angle: 25 – 30 Degrees 
for BOTH Bending & Torsional Stiffness

Cross Ribs
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Design guidelines – Influence of rib angle on beam stiffness
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Increasing plastic performance with structural ribs
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 In structural parts where sink marks are of no concern, 
rib base thickness (t) can be 75–85% of the adjoining 
wall thickness (T).

 In appearance parts, (t) should be <50% of the 
adjoining wall thickness (T) if the outside surface is 
textured and <30% if not textured.

 Rib height should be at least 2.5–3.0 times the wall 
thickness (T) for effective strength.

 Draft should be 1/2° per side nominal.

 Multiple ribs should be spaced at least 2T apart to reduce 
molded in stress and problems in cooling of the mold.



Surface
Texture

Contour 
Changes
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Structural ribs – Hiding sink marks
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Conclusion: Use plastic’s advantage of ribs and maximize height
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Increasing plastic performance with structural ribs
– Competing with metals in deflection and stress 



Beam Stiffness in Flexural Comparison Beam Stiffness in Torsion Comparison
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Beam stiffness chart – Flexural and torsion



Problem:  Bracket Bending Under Load

Actual part design history – Cruise control bracket
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Reason for part failure
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Material?

Processing?

Design?
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R = EI

Simple Cantilever Beam
H = Thickness

B = Width

Modulus of Elasticity, E

R can be increased by increasing E

Moment of Inertia, I

A small increase in H translates into a large increase in I, which in turn will increase R.
Example:  If H is doubled, I will be increased by a factor of 8!

12

3BHI =

Rigidity equation
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E for plastic = 740,000 psi (PA6 +33%SGF) at 50% RH
E for steel 30,000,000 psi (40.5X plastic)

Since I = bh3/12, a small change in h will result in a cubed
effect or a large increase in R, a very effective change.

Rigidity Modulus, R = EI
E = Modulus of Elasticity 
I = Moment of Inertia
R can be increased by increasing E or I

Conclusion: Gain Performance through Section’s Moment of Inertia

Increasing plastic performance with structural ribs 
– Competing with metals in deflection and stress 
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Cut tensile bars
parallel and perpendicular to 
melt flow direction
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Fiber orientation material characterization – GF Nylon
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Fiber orientation material characterization – GF Nylon
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ULTRASIM®

Every finite element is 
assigned a unique 
mechanical property



Mold filling CAE for fiber orientation and material behavior
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Fiber orientation of 0.5

Fiber orientation of 0.9
205 MPa

70 MPa

Conclusion: Higher strength in critical location with optimized gating



Highly precise CAE for physical testing correlation
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23°C

100°C

Long-term properties – Fatigue 
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Designing based on S-N curves prevent fatigue failures



Creep curves – GF nylon versus GF polypropylene  
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Gating considerations  
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 Gates should be located away from 
high stress or impact areas.

 Gate configuration and location  
should minimally affect part 
appearance.

 Gates should be located to best fill 
the part for optimal fiber orientation 
and locate knit lines in low-stress 
areas



Case A: Part without failure!

Case B: Failure!

Case C: Failure!

Case A

Case C

Case B
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Example: Ultrasim® for simple beam 
– Accurate prediction of failures



Conclusion   
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Why convert to Plastics?
• Cost & Weight reduction
• Part consolidation for ease of assembly
• Improved aesthetics

How?
• Using good plastic design principles
• Identifying & designing for the worse case conditions/ properties
• Using CAE (complex parts) to confirm design before building tool
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