

Outline

Why convert to plastics?

Basic material properties / material selection

Basic thermoplastic design

Designing with structural ribs

GF resins / fiber orientation / CAE examples

This information is provided as a service for comparative purposes only and in no way constitutes any product specification or the like. For component design the data contained herein are applicable as guideline only.

Long-term properties / gating

Covered in this section

Why convert to plastics?

Basic material properties / material selection

Basic thermoplastic design

Designing with structural ribs

GF resins / fiber orientation / CAE examples

Long-term properties / gating

Why convert to plastic?

Cost reduction

Lower price for consumer, increased margin / volume for OEM

Weight reduction

Key requirement for automotive, hand power tools and other industries

Improved chemical / corrosion resistance

Eliminates the possibility of rust and the need for painting

Improved aesthetics

Allows for molded-in-color

Part consolidation

Reduce assembly time and cost

Why convert to plastic – Benefits of plastics over metals

Greater design flexibility

Combine parts, color-code key parts, add textures, etc.

Increased tool life

Up to 6 times longer tool life over die cast

Increased strength to weight ratio

Lower density allows part to be designed with increased part strength

Reduced secondary operations

No need for deburring, polishing, etc.

Warmer to the touch

Reduced thermal conductivity allows part to feel "warm"

Covered in this section

Why convert to plastics?

Basic material properties / material selection

Basic thermoplastic design

Designing with structural ribs

GF resins / fiber orientation / CAE examples

Long-term properties / gating

Basic material properties – Comparison

Specific Gravity

Material selection – BASF Ultramid® B3WG6 datasheet

Product Description

Ultramid B3WG6 is a 30% glass fiber reinforced, heat stabilized injection molding PA6 grade.

Applications

Typical applications include automotive manifolds and pedals.

PHYSICAL	ISO Test Method	Prope	erty Value		
Density, g/cm³	1183		1.36		
Moisture, %	62				
(50% RH)			2.1		
(Saturation)		6.6			
RHEOLOGICAL	ISO Test Method	Dry	Conditioned		
Melt Volume Rate (275 C/5 Kg), cc/10min.	1133	50	-		
MECHANICAL	ISO Test Method	Dry	Conditioned		
Tensile Modulus, MPa	527				
23C		9,500	6,200		
Tensile stress at break, MPa	527				
23C		185	115		
Tensile strain at break, %	527				
-40C		4.0	-		
23C		3.5	8.0		
Flexural Strength, MPa	178				
23C		270	180		
Flexural Modulus, MPa	178				
23C		8,600	5,000		
IMPACT	ISO Test Method	Dry	Conditioned		
Izod Notched Impact, kJ/m²	180				
23C		15	20		
Charpy Notched, kJ/m2	179				
-30C		11	-		
23C		15	30		
Charpy Unnotched, kJ/m ²	179				
-30C		80	-		
23C		95	110		

Good for initial material screening but rarely used in design

Functional considerations – Critical to material selection

Environmental design considerations – Critical to material selection

Material selection – Engineering plastics

- High strength
- Excellent toughness

Polyester PBT / PET

- Excellent dimensional stability
- Good electrical properties

Acetal POM

- Excellent sliding and friction properties
- Broad chemical resistance

- Very high heat resistance
- Excellent chemical resistance

Covered in this section

Why convert to plastics?

Basic material properties / material selection

Basic thermoplastic design

Designing with structural ribs

GF resins / fiber orientation / CAE examples

Long-term properties / gating

What is design?

Definition:

To create, execute or construct a plan that improves parts or details

i.e., "Make something better"

Basic steps in plastic design

- 1. Define part *FUNCTIONS*
- 2. **SKETCH** part shape along with critical sections
- 3. Define applied **LOADS** (static, fatigue, impact, abrasion)
- 4. Estimate value of **STRESSES** by hand calculations
- 5. Investigate potential MATERIAL options
- 6. Determine **WALL THICKNESS** starting point
- 7. Conduct initial **STRESS ANALYSIS** by CAE
- 8. Conduct **MOLD FLOW** by CAE
- 9. **OPTIMIZE** the design based on CAE results
- 10. Make and test **PROTOTYPE** parts
- 11. **REVISE** design based on test results

For a successful engineered application in thermoplastics

Example of designing for extreme environmental situation

Datasheet Properties:

Stress strain curve overlay

Metals Exhibit

Higher Strength & Stiffness

CAMPUS* Database

*CAMPUS (Computer Aided Material Preselection by Uniform Standards)

Balancing strength and elongation with temperature extremes

-20°C

- Increased strength
- Decreased elongation

80°C

- Decrease strength
- Increased elongation

Plastic 101 design tips

- Things to remember about plastics
- Basic 'Rules of Thumb'

Uniform wall thickness

Corner stress concentration

- Cantilever Beam example

Cantilever Beam

$$M = Fd$$

$$= (10lb) (2in)$$

$$= 20in-lb$$

$$C = \frac{h}{2}$$

= 0.125in

$$I = \frac{bh^{3}}{12} = \frac{(.20in) (.25in)^{3}}{12}$$
$$= 2.6 \times 10^{-4} in^{4}$$

Wrong Way

$$\sigma = \frac{Mc}{I}$$

$$= \frac{(20in-lb)(.125in)}{2.6 \times 10^4 in^4}$$
 $\sigma = 9600 \text{ psi}$

Right Way

$$\sigma = K \frac{Mc}{I}$$

$$\frac{R}{t} = \frac{.05in}{.25in} = .2$$

$$K = 2.5$$

$$\sigma = 2.5(9600 \text{ psi})$$

Glass filled polymers – Fiber orientation

Equivalent stiffness example

I = Moment of Inertia

Equivalent Stiffness I_{Plastic} >>> I_{METALS}

Rigidity = E x I E = Modulus

Steel

 $E = 30 \times 10^6$

I = 0.0017

 $E \times I = 5.08 \times 10^4$

A = 0.198

Aluminum

 $E = 10.3 \times 10^6$

I = 0.0049

 $E \times I = 5.08 \times 10^{4}$

A = 0.283

Polyamide (33% GR)

 $E = 1.2 \times 10^6$

I = 0.0424

 $E \times I = 5.08 \times 10^4$

A = 0.17

$$I = \frac{BH^3}{12}$$

Covered in this section

Why convert to plastics?

Basic material properties / material selection

Basic thermoplastic design

Designing with structural ribs

GF resins / fiber orientation / CAE examples

Long-term properties / gating

Add ribs to increase structure

Design guidelines – Influence of rib angle on beam stiffness

Optimal Rib Angle: 25 – 30 Degrees for *BOTH* Bending & Torsional Stiffness

Increasing plastic performance with structural ribs

- In <u>structural parts</u> where sink marks are of no concern, rib base thickness (t) can be <u>75–85%</u> of the adjoining wall thickness (T).
- In <u>appearance parts</u>, (t) should be <u><50%</u> of the adjoining wall thickness (T) if the outside surface is textured and <u><30%</u> if not textured.
- Rib height should be at least 2.5–3.0 times the wall thickness (T) for effective strength.
- Draft should be 1/2° per side nominal.
- Multiple ribs should be spaced at least 2T apart to reduce molded in stress and problems in cooling of the mold.

Structural ribs – Hiding sink marks

Increasing Stiffness to Weight Ratio

Increasing plastic performance with structural ribs

- Competing with metals in deflection and stress

Effect of 1/8in Thick Rib of Various Heights on the Strength of a 2in x 1/4in Beam							
Case Number	Shape	Rib Size	Rib Height/ Wall Thickness	% Increase in Weight	% Increase in Stiffness		
0	←2 in→ T	N/A	N/A	N/A	N/A		
1	2T	N/A	N/A	100	700		
2	Ţ	1/8in W x 1/8in H	1:2	3.12	23		
3		1/8in W x 1/4in H	1:1	6.25	77		
4		1/8in W x 1/2in H	2:1	12.5	349		
5		1/8in W x 3/4in H	3:1	19.0	925		

Beam stiffness chart – Flexural and torsion

Beam Stiffness in Flexural Comparison

Beam Stiffness in Torsion Comparison

Profile Cross-Section (Equal Sectional Area)		Relative Stiffness in Torsion							
		0	20)	Per 40	cent (% 60)	80	100
Tube, Thin Walled	0								
Rectangular Tube					7				
Tube, Thick Walled	0								· ·
Circle, Solid	0								
Square									_
Rectangle, 2:1									
Rectangle, 5:1	5333				70				
T - Profile, High	\dashv			-	- 0				
T - Profile, Wide	\dashv								
Angle	J								
T - Profile, Wide	I								
U - Profile									
I - Profile, Narrow	Ι								

Various profiles with equal cross-section areas

Actual part design history – Cruise control bracket

Problem: Bracket Bending Under Load

Reason for part failure

Material?

Processing?

Design?

Rigidity equation

R = EI

Simple Cantilever Beam

Modulus of Elasticity, E

R can be increased by increasing E

Moment of Inertia, I

$$I = \frac{BH^3}{12}$$

A small increase in H translates into a large increase in I, which in turn will increase R.

Example: If H is doubled, I will be increased by a factor of 8!

Increasing plastic performance with structural ribs - Competing with metals in deflection and stress

E = Modulus of Elasticity
I = Moment of Inertia
R can be increased by increasing E or I

E for plastic = 740,000 psi (PA6 +33%SGF) at 50% RH E for steel 30,000,000 psi (40.5X plastic)

Since $I = bh^3/12$, a small change in h will result in a cubed effect or a large increase in R, a very effective change.

Conclusion: Gain Performance through Section's Moment of Inertia

Covered in this section

Why convert to plastics?

Basic material properties / material selection

Basic thermoplastic design

Designing with structural ribs

GF resins / fiber orientation / **CAE** examples

Long-term properties / gating

Fiber orientation material characterization – GF Nylon

Fiber orientation material characterization – GF Nylon

Every finite element is

Mold filling CAE for fiber orientation and material behavior

Conclusion: Higher strength in critical location with optimized gating

Highly precise CAE for physical testing correlation

Covered in this section

Why convert to plastics?

Basic material properties / material selection

Basic thermoplastic design

Designing with structural ribs

GF resins / fiber orientation / CAE examples

Long-term properties / gating

Long-term properties – Fatigue

Designing based on S-N curves prevent fatigue failures

Creep curves – GF nylon versus GF polypropylene

Gating considerations

- Gates should be located away from high stress or impact areas.
- Gate configuration and location should minimally affect part appearance.
- Gates should be located to best fill the part for optimal fiber orientation and locate knit lines in low-stress areas

Example: Ultrasim® for simple beam

Accurate prediction of failures

Conclusion

Why convert to Plastics?

- Cost & Weight reduction
- Part consolidation for ease of assembly
- Improved aesthetics

How?

- Using good plastic design principles
- Identifying & designing for the worse case conditions/ properties
- Using CAE (complex parts) to confirm design before building tool

We create chemistry