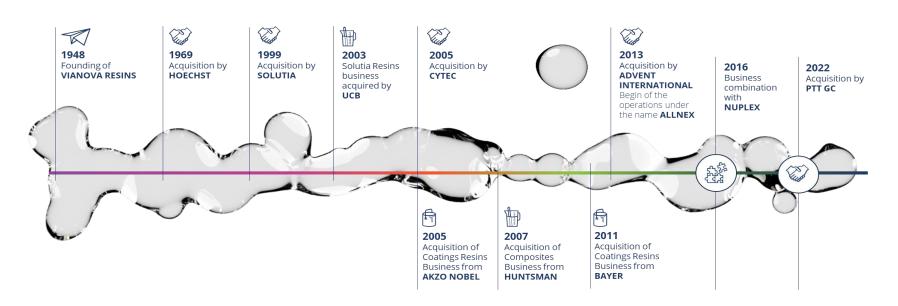

FAST CURING 2K SYSTEMS WITH NO POPPING LIMIT MICHAEL ADDITION GOES WATERBORNE – **ACURE™ AQ**

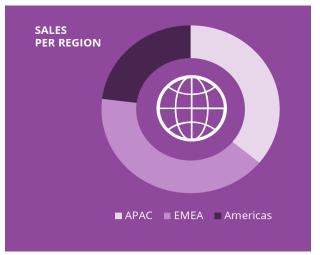
SPEAKERS OF TODAY

Oliver Truchses
TS&BD Leader General
Industry & Protective EMEA
oliver.truchses@allnex.com



Gottfried Fuerpass Senior Lab Leader Technology EMEA

gottfried.fuerpass@allnex.com



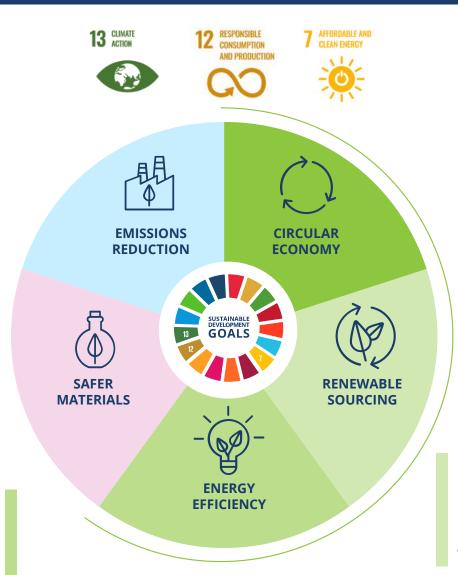
ALLNEX AT A GLANCE

OUR SUSTAINABILITY PILLARS

These pillars form the basis of allnex's ambitious Sustainability Program, covers all aspects from

- product development,
- raw material sourcing
- manufacturing supply chain management
- customer service.

EMISSIONS REDUCTION


Reduce VOC across PLC Protect people and environment

SAFER MATERIALS

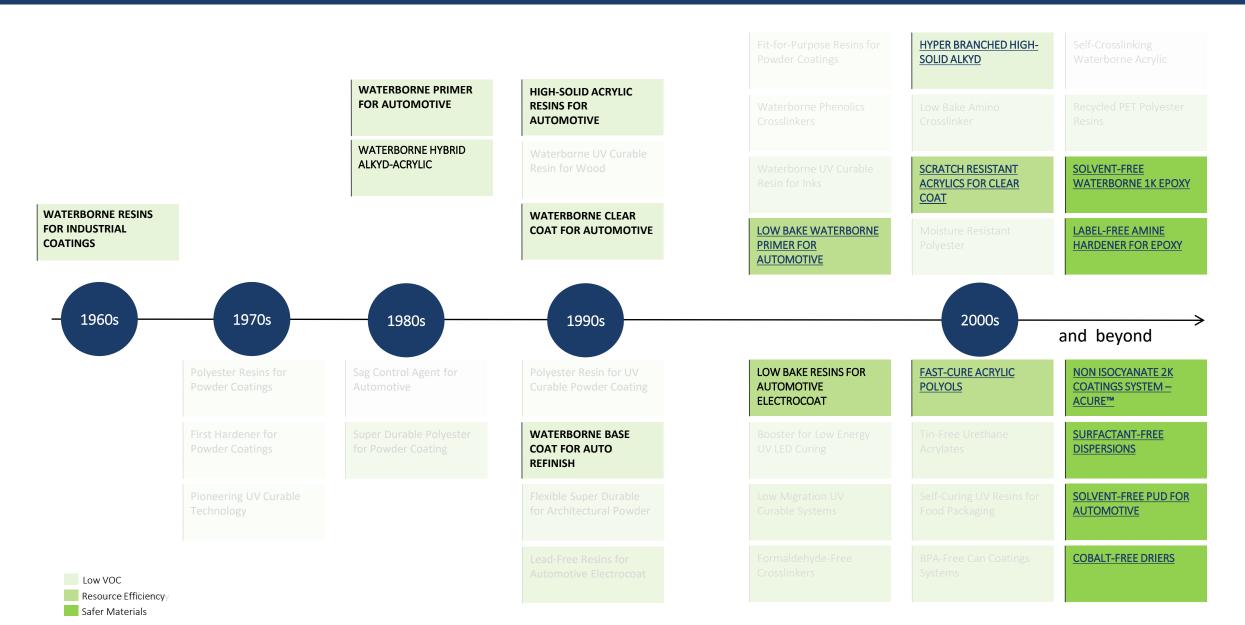
Strong comittment of substitution of potentially harmful chemicals.

ENERGY EFFICIENCY

Maximum energy efficiency in energy utilizazion across PLC

CIRCULAR ECONOMY

Limit consumption of resources Use them as long as possible Eventually revcover & recycle


RENEWABLE SOURCING

Minimal use of finite resources
Reduce climate impact by renewable
alternatives

www.allnex.com

PIONEERING SUSTAINABLE CHANGE

OUTLINE

NISO Overview

ACURE™ AQ — Introduction

ACURE™ AQ – Do's & Don'ts

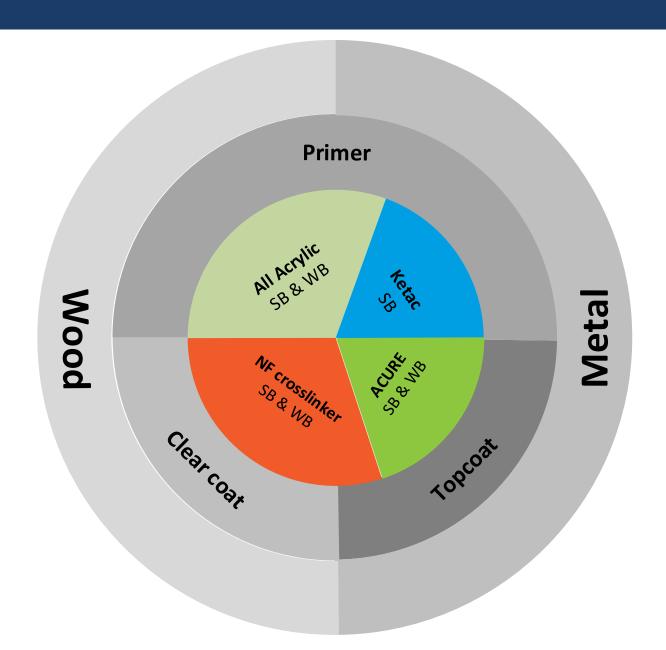
ACURE™ AQ – Future developments & value proposition

SUSTAINABLE IMPROVEMENT VERSUS ISOCYANATE CURING

Why allnex?

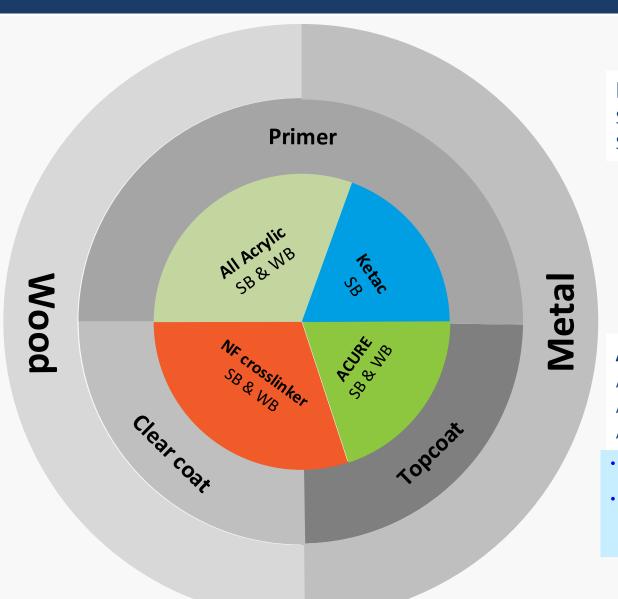
- Working on NISO technologies since many years
- Main driver, any new NISO system should be a sustainable improvement in product safety
- No toxic, harmful or allergy causing substances

Why NISO?


- Even 2K Isocyanate system are established for centuries, they have intrinsic issues which might be a challenge in future
- Most all global paint companies have active alternative programs
- Seeking for similar performance & preparing for tighter regulations

NISO OVERVIEW

NISO OVERVIEW


ALL ACRYLIC

SETALUX® 8403 SS-55 SETALUX® 8503 SS-60

SETAQUA® 8455 SETAQUA® 8556

NON FORMALDEHYDE CROSSLINKER

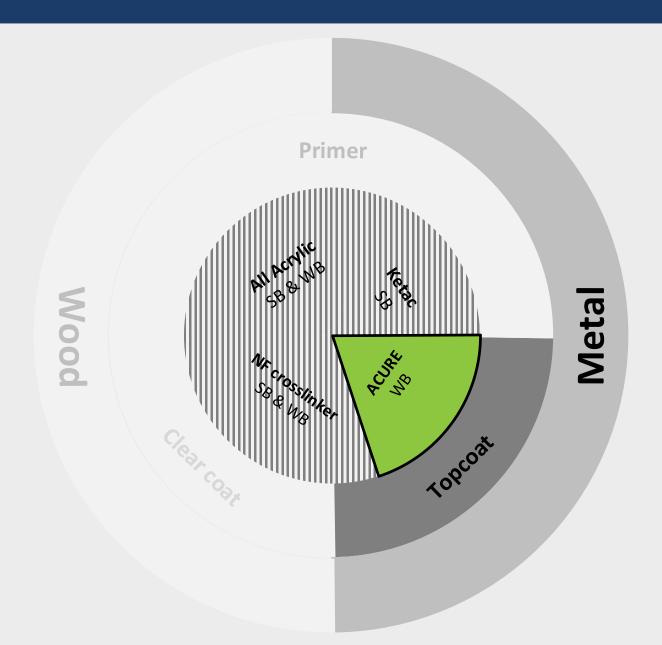
CYMEL® NF 2000A CYMEL™ NF 3030 CYMEL™ NF 3041

KETAC

SETALUX® 7006 SS-65 SETAL® 7205 BA-86

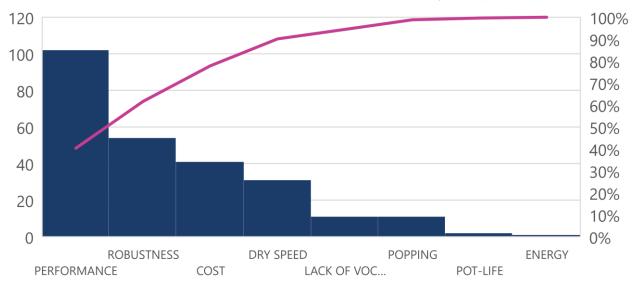
ACURE

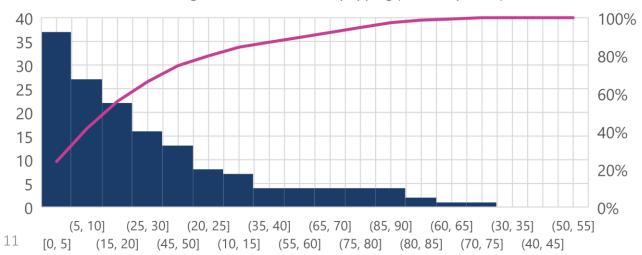
ACURE[™] 510-200 ACURE[™] 510-270 ACURE[™] 500


- WEBINAR: ACURE™ Application-Specific Performance (ulprospector.com)
- WEBINAR: New ACURE™ Topcoat Based Non-Isocyanate Layer Systems (ulprospector.com)

www.allnex.com

TODAY'S FOCUS





REPLIES TO QUESTIONNAIRE

REASONS FOR LACK OF ADOPTION (253 sample set)

Coating failures as a result of popping (155 sample set)

- The cost/performance balance for WB 2K systems seems to be too low in comparison to a SB alternative
- About 25% of respondents commenting about performance or other issues, flagged that there is a perception issue at the end user rather than an actual problem
- Robustness issues mostly pointed at application conditions related to temperature, humidity. Other issues related to paint formulation and surface preparation.
- 23% of respondents reported very low amounts of failures due to popping, about 36% reported failures in between 5-20% failures. Important to not that there is a big spread in the numbers.

2

ACURE AQ™ Introduction

Chemistry & Performance profile

allnex

ACURE™ AQ – THE NEW WATERBORNE NON-ISOCYANATE 2K SYSTEM

Why a Waterborne NISO system?

- Isocyanates are used as crosslinkers in 2K PU coatings, these products are labeled as harmful & allergenic.
- A key issue identified in working with 2K waterborne systems is the so-called **popping effect**, which results from the reaction of isocyanate with water. This results in bad appearance in higher layer-thickness and negative effects on corrosion performance amongst others.
- Another drawback of these systems is the **limited pot-life** after mixing the two components, as this causes **paint waste** and **inconsistent quality** at different points in time.

Potential solution?

ACURE™ AQ

- addressing some of these key issues by bringing our ACURE™ technology to the waterborne coatings domain

ACURE™ AQ - THE CURING MECHANISM (MICHAEL ADDITION)

Strong base catalyst deprotonates the donor-site, which enables reaction with the acceptor double bond. Resulting in carboncarbon crosslinking.

ACURE™ AQ - THE CURING MECHANISM (MICHAEL ADDITION)

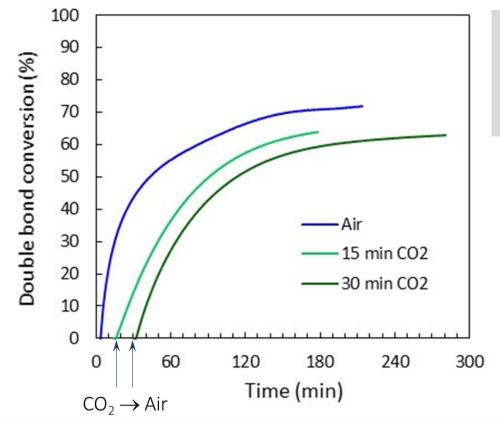
Donor

Catalyst becomes deblocked by the release of CO2 creating the strong base needed in the Michael addition reaction

Strong base catalyst deprotonates the donor-site, which enables reaction with the acceptor double bond. Resulting in carboncarbon crosslinking.

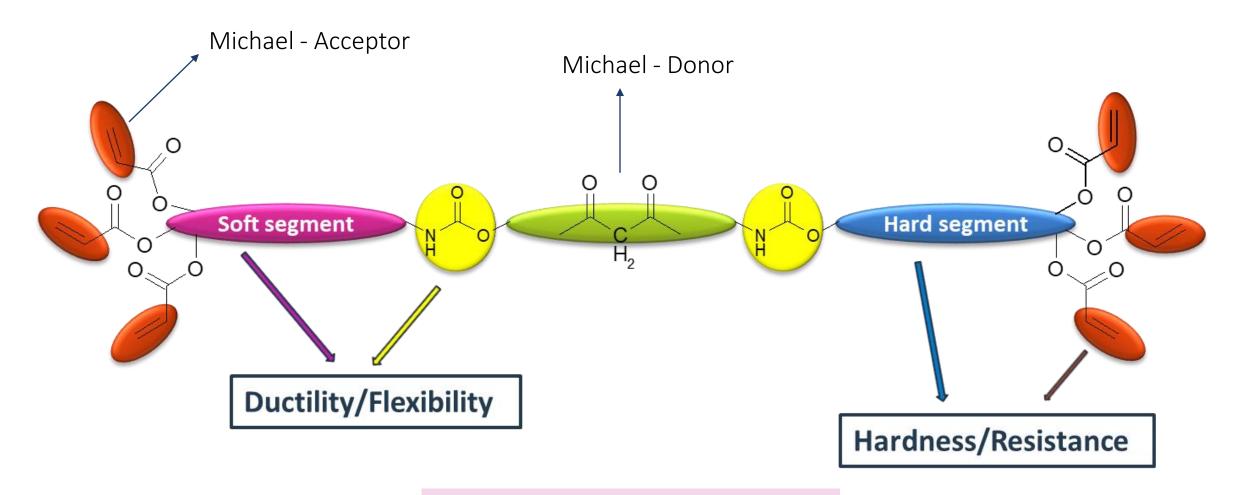
Acceptor

Extremely fast cure/conversion once catalyst is de-blocked No side reactions with water, no toxic metal catalyst



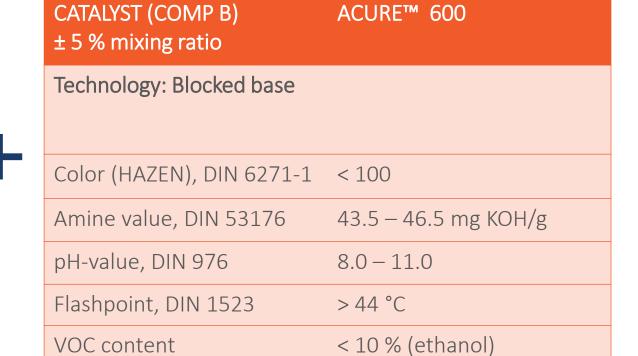
RO

ACURE™ AQ - THE CURING MECHANISM (MICHAEL ADDITION)


DLP printed environmental chamber for FTIR spectroscopy. The chamber is flushed with CO₂ gas.

- No curing upon CO₂ saturation
- Curing starts immediately after switch to air

ACURE™ AQ – THE BINDER CONCEPT

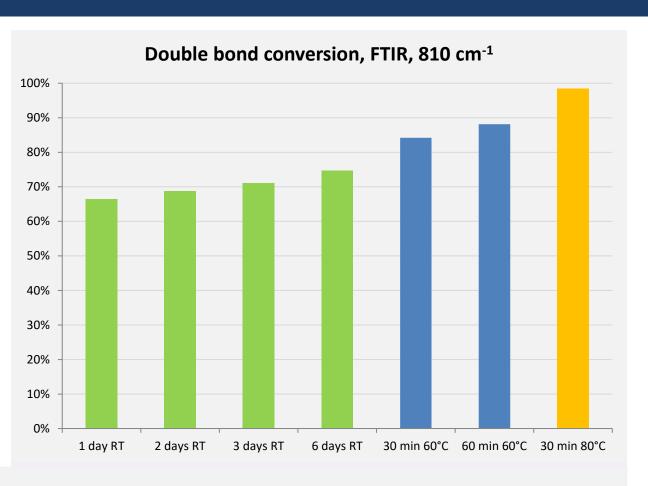


Options for bio-based content!

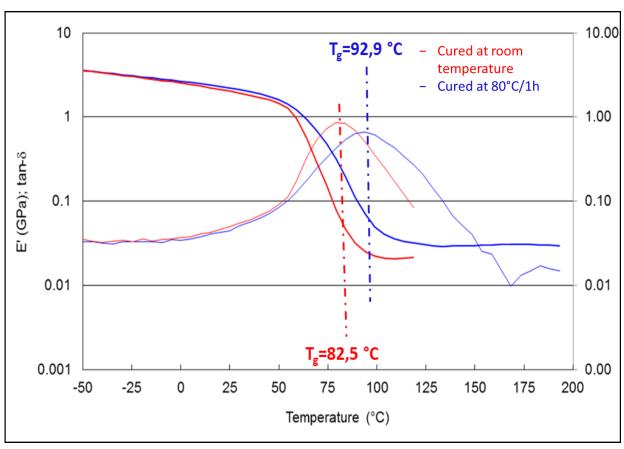
ACURE™ AQ – RESIN PROPERTIES

RESIN (COMP A) ± 95 % mixing ratio	ACURE™ AQ 620-100
Technology: Non-ionic PUD of donor and acceptor sites	containing both Michael
Solids content, DIN 55671	41.0 – 43.0 %
Dyn. Viscosity, ISO 3219	< 4000 mPa.s
Acid number, ISO 2114	<= 2 mg KOH/g
pH-value, DIN 976	6.0 - 8.0
Flashpoint, DIN 1523	> 94 °C
VOC content	< 3 % (methoxy propanol)

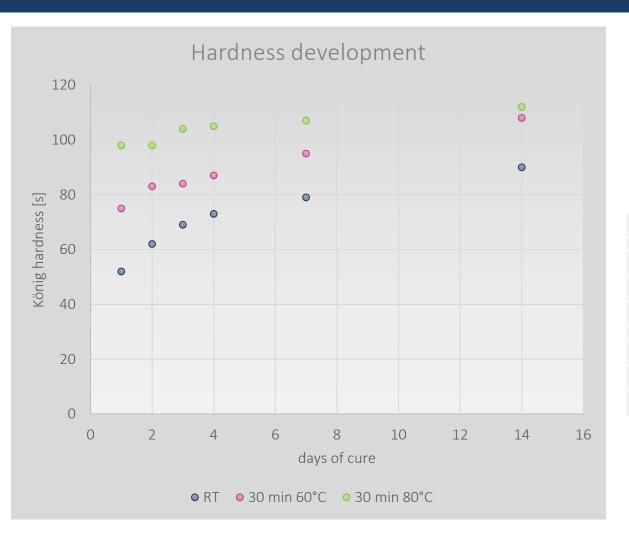
Low viscosity catalyst is easily blended into component A


ACURE™ AQ – LESS HAZARDOUS MATERIALS

ACURE™ AQ 620-100 Typical hydrophilic Polyisocyanate ACURE™ 600 Signal Word Signal Word Signal Word Warning Warning Warning H317 - May cause an allergic skin reaction. H315 - Causes skin irritation. H226 - Flammable liquid and vapour. H332 - Harmful if inhaled. H312 - Harmful in contact with skin. H319 - Causes serious eye irritation. H412 - Harmful to aquatic life with long H336 - May cause drowsiness or dizziness. H335 - May cause respiratory irritation. H412 - Harmful to aquatic life with long lasting effects. H319 - Causes serious eye irritation. H412 - Harmful to aquatic life with long lasting effects. lasting effects. Not considered to be a skin allergenic (H317) Mixture of ACURE™ AQ 620-100 + ACURE™ or a respiratory irritant (H332, 335). 600 is no longer flammable. Suspected skin and eye irritation Cat 2 (H315


and H319).

ACURE™ AQ – HIGH CROSSLINK DENSITY EVEN AT AMBIENT CURE

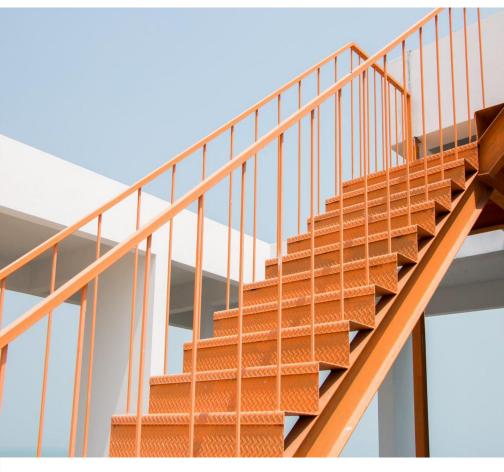

A high x-linking density is already feasible with pure room temperature cure. Full conversion is achieved by forced cure.

		RT	1h/80°C
VID	v _e , mmol/cm³	2,089	2,883
XLD	M _c , g/mol	530	380

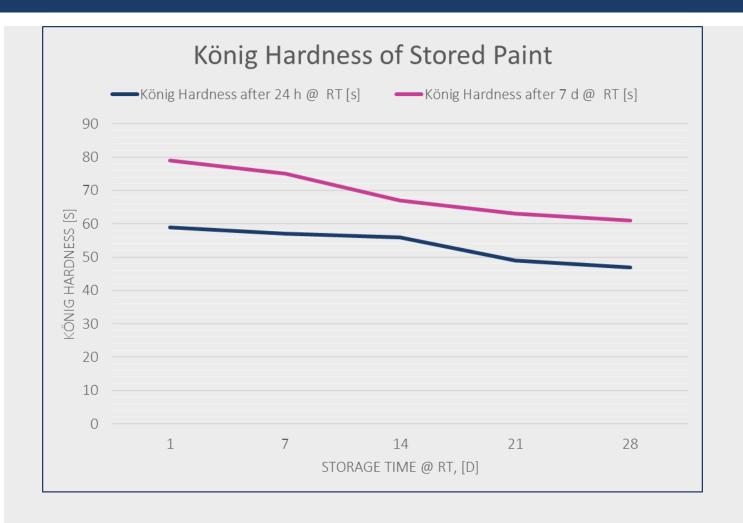
ACURE™ AQ – PAINT PERFORMANCE AS A FUNCTION OF CURE TEMPERATURE

Performance data of white pigmented topcoat (P/B=0,8)

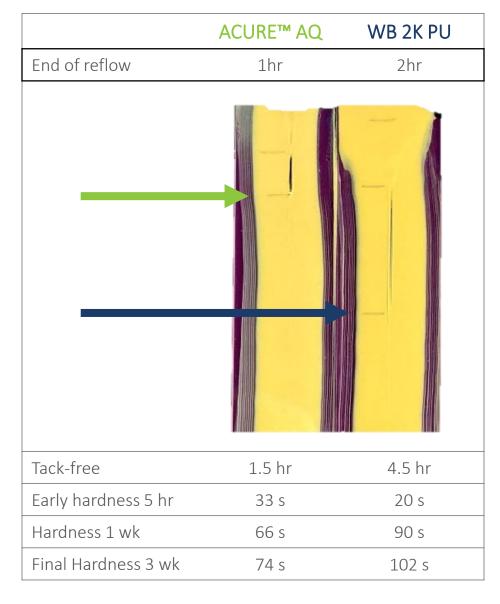
	23°C	30 min / 60°C	30 min / 80°C
Tack free time	< 60 min	-	-
Erichsen cupping	9,5 mm	9 mm	9 mm
Impact, front	> 50 iP	> 50 iP	> 50 iP
Impact, back	> 50 iP	> 50 iP	> 50 iP
MEK-double rubs	> 200	> 200	> 200
EtOH resistance	10 min	15 min	20 min
Acetone resistance	4 min	5 min	6 min

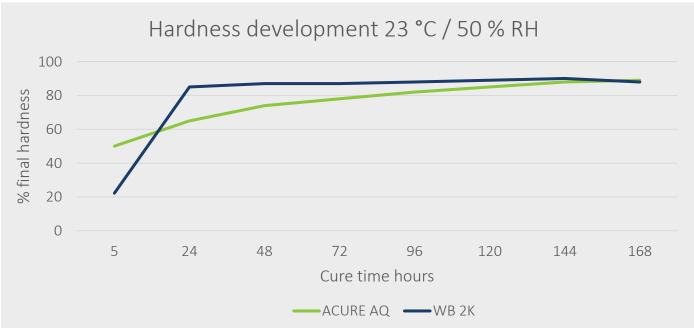


ACURE™ AQ – AN OUTSTANDING POTLIFE

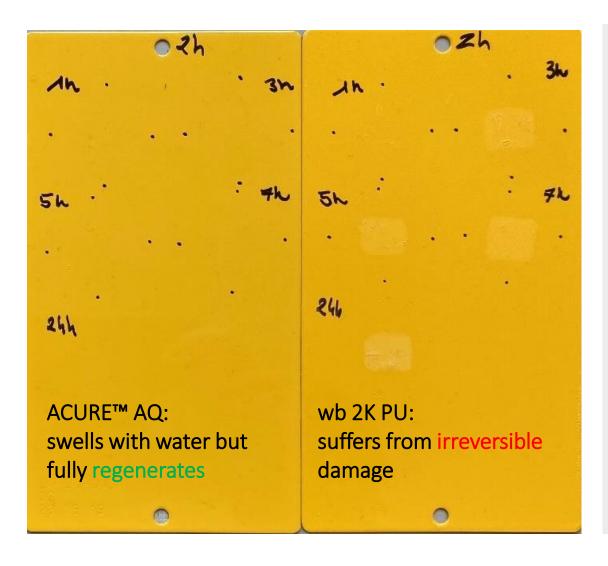


ACURE™ AQ – AN OUTSTANDING POT-LIFE




- Still 80 % of initial hardness after 28 days of pot-life
- 200 MEK DR throughout 28 days of pot-life
- No loss of gloss performance

ACURE™ AQ - EARLY PROPERTY DEVELOPMENT (HARDNESS)

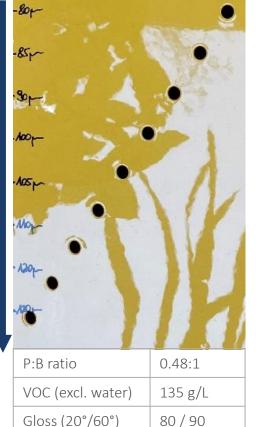


ACURE™ AQ has a clear advantage during the initial stages of cure, which enables faster cycle times at end-users

Final properties take a bit longer to develop with ACURETM AQ. Typical WB 2K PU formulations have NCO reacting with H_2O in the formulation, leading to faster hardness build up. This causes formation of CO_2 and may lead to bad appearance and film properties.

ACURE™ AQ - EARLY PROPERTY DEVELOPMENT (RESISTANCE TO WATER)

Water spot test, 2 hours after coating is applied 23 °C / 55 %RH


Exposure time	ACURE™ AQ Topcoat	wb 2k PU Topcoat
1 h	ok	soft/sticky
3 h	small blisters/regen.	whitish/flat
5 h	small blisters/regen.	whitish/flat
7 h	small blisters/regen.	whitish/flat
24 h	small blisters/regen.	whitish/flat

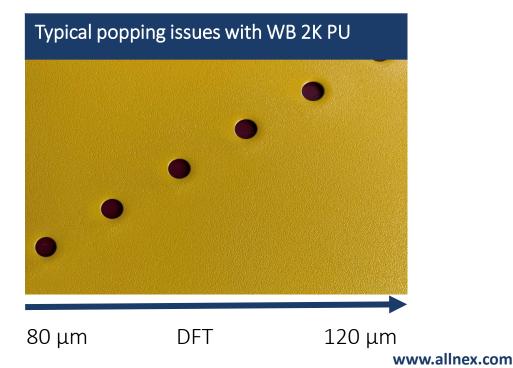
A key issue with 2K waterborne polyurethane coatings is their sensitivity to water in the early hours after the coating is applied.

ACURE™ AQ - GREAT APPEARANCE REGARDLESS OF COATING THICKNESS

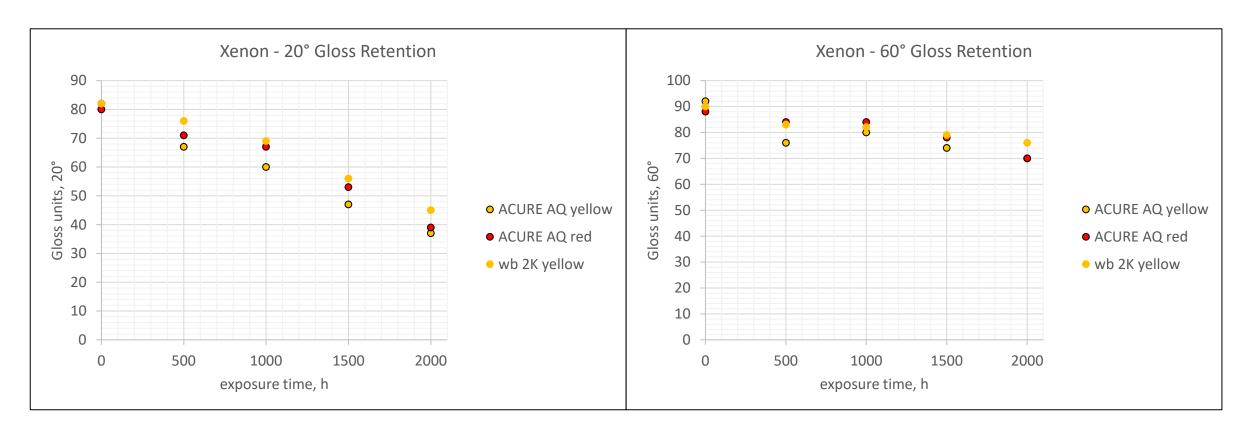
ACURE AQ based topcoats

80 µm

DFT


120 µm

No side reactions happen during the curing of ACURE™ AQ as there is no NCO present to form CO₂


Maximum coating thickness is determined by sagging performance of the coating

Short flash-off time before forced cure, might cause catalyst to trigger before H₂O has evolved from the film. (min 40 mins)

ACURE™ AQ - XENON WEATHERING

German Railway Standard = Initial gloss >80 GU at 20°; 1500 h Xenon >50 GU at 20° & delta E = 1,5

ACURE™ AQ - SYSTEM FLEXIBILITY DETERMINED BY PRIMER NOT BY TOPCOAT

DFT 60 μm (Primer), 50 μm (TC), 7 days 23°C/50%RH, Cold rolled steel

	Impact (ASTM D-2794), inch-pounds		Erichsen indentation	Conical Mandrel (DIN 6860), mm	Adhesion (DIN 53151), Gt
	face	reverse	(DIN 53156), mm		
Primer (EP 2387/EH 2100)	60	10	7.7	0	n.a.
Primer + ACURE AQ Topcoat red	70	30	9.6	0	0-1
Primer + ACURE AQ Topcoat yellow	80	50	> 10	0	0-1
Primer + wb 2k Topcoat yellow	70	30	> 10	0	0-1

DFT 70 μm (Primer), 50 μm (TC), 7 days 23°C/50%RH, Cold rolled steel

	, ,	M D-2794), ounds	Erichsen indentation	Conical Mandrel (DIN 6860), mm	Adhesion (DIN 53151), Gt
	face	reverse	(DIN 53156), mm		
Primer (EP 2384/EH 2261)	20	<5	1.0	11 cm	n.a.
Primer + ACURE AQ Topcoat red	20	<5	5.9	0	0-1
Primer + ACURE AQ Topcoat yellow	20	<5	8.7	0	0-1
Primer + wb 2k Topcoat yellow	20	<5	9.9	0	0-1

> 200 MEK double rubs!

ACURE™ AQ - ADHESION TO EPOXY PRIMERS

FLEXIBLE ULTRA LOW VOC PRIMER (REC 20026)

BECKOPOX™ EP 2387w/53WA BECKOCURE® EH 2100w/44WA	Cross cut adhesion after 14 days			
Dry time Primer	2 hours	6 hours	24 hours	24 h RT + 24 h 80 °C
ACURE AQ yellow	0-1	0-1	0-1	0
wb 2K PU yellow	0	0	0-1	0

FAST CURING LOW VOC PRIMER (REC 19012)

BECKOPOX EP 2384w/57WA BECKOCURE EH 2261w/41WA	Cross cut adhesion after 14 days				
Dry time Primer	2 hours	6 hours	24 hours	24 h RT + 24 h 80 °C	24 h RT + 24 h 80 °C + sanding
ACURE AQ yellow	1-2	1	1	5	0-1
wb 2K PU yellow	1	1	1	1	1

It is advisable to sand force cured/baked epoxy primer, if compatibility has not been tested upfront. With our newly developed ultra-low VOC flexible primer system, sanding can be avoided while also keeping total VOC emissions at the lowest possible level.

Fast primers based on EP 2384 and EH 2261 can be overcoated after short ambient cure.

ACURE™ AQ - SHORT RECOAT WINDOW FOR HIGHER THROUGHPUT

VDA Test: 2-layer system ACURE™ AQ Red Topcoat (REC20042) Primer based on BECKOPOX™ EP 2384w/57WA - BECKOCURE® EH 2261w/41WA 2 H* 6 H 24 H

DIN 11997-1	6 cycles
Blisters	none
Blisters at scribe	2(S2)
Adhesion (DIN 2409)	GT 2
Rust (DIN 4628-3)	Ri O
Delamination from scribe	0 – 1 mm

Substrate: Sandblasted steel (Sa 2½) VDA Test: DIN EN ISO 11997-1 / Cycle B

Primer: 90 μm DFT Topcoat: 55 μm DFT

Drying: 7 days 23 °C / 50 %RH

^{*} Time indication: drying of the primer layer @ 23 °C / 50 %RH

ACURE™ AQ - SHORT RECOAT WINDOW FOR HIGHER THROUGHPUT

Neutral Salt Spray Test: 2-layer system
ACURE™ AQ Red Topcoat (REC20042)
Primer based on BECKOPOX™ EP 2384w/57WA - BECKOCURE® EH 2261w/41WA

2 H* 6 H 24 H

	672 h	1008 h
Salt Spray Test: DIN 9227		
Delamination from scribe	0-2 mm	1-3 mm
Blisters	1(S1)	1-2(S1-2)
Humidity Chamber: DIN 6270-2		
Gloss (20°/60°)	76/90	72/88
Blisters	ok	1(S2)

Substrate: Sandblasted steel (Sa 2½)

Primer: 90 μm DFT Topcoat: 55 μm DFT

Drying: 7 days 23°C/50% RH

^{*} Time indication: drying of the primer layer @ 23 °C / 50 %RH

3

ACURE AQTM

Do's & Don'ts

allnex

CONSIDERATIONS IN FORMULATING AND APPLYING ACURE™ AQ

Avoiding acids in the formulation or substrates:

The topcoat cures by strongly basic catalysis. Any acidic components (dispersants, thickeners, fillers, etc.) will consume the catalyst and lead to cure inhibition. The primer layer should not contain accessible acidic groups. If anionic primers are used it should be readily cured before the topcoat is applied.

Light Stabilizers:

HALS stabilizer (e.g. Tinuvin 292) and UV-absorber (e.g. Tinuvin 1130) can be used in darker pigmented systems. For better incorporation it is recommended to dissolve the light stabilizers in a proper solvent, (e.g. 1:1 in butyl glycol acetate). For clearcoats over brighter basecoats paint discoloration (yellowing) with certain UV-absorbers may be an issue. Tinuvin 292 alone works well, if additional UV-absorber is desired we recommend to use Tinuvin 479-DW.

Pot-life:

The resin does not show a pot-life indication (no increase of viscosity, no loss of gloss). Application of premixed resin + catalyst during 24 hours can be achieved without loss of properties. Formulations are useable for even longer periods, but this has to be evaluated depending on formulation and performance requirements.

Shear stability:

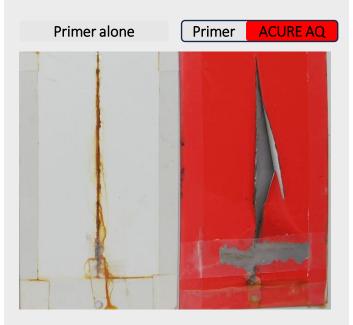
Direct grinding is possible

Paint storage:

Formulated component A should not be stored under oxygen free atmosphere as it contains acryloyl functionality. Storage temperatures exceeding 40°C are not recommended.

Catalyst dosing:

ACURE 600 shows good miscibility with water and component A. It can be diluted with water to ensure easy dosing and mixing ratios of both components.


CONSIDERATIONS IN PRIMER FORMULATION

Primer formulation

Part	Components
	Deion. Water
1	ADDITOL VXW 6208
	ADDITOL VXW 6393
	Talcum
	Kronos 2190
II	Bayferrox 3920
	Bayferrox 306
	EWO
==	ADDITOL VXW 6393
1111	Texanol
IV	ADDITOL VXW 6388
IV	Methoxypropanol
	Slurry

BECKOPOX EP 2384w/57WA

BECKOPOX EH 2261w/41WA

Salt spray test after 168 hours

Untreated steel panels (Gardobond OC) Drying primer 24 h before topcoat application DFT: $50-60 \mu m / 40-50 \mu m$ (Primer / Topcoat)

Primer formulation

Part	Components
	Deion. Water
1	ADDITOL VXW 6208
	ADDITOL VXW 6393
	Silitin Z 89 or Aktisil AM
	Kronos 2190
П	Bayferrox 3920
	Bayferrox 306
	EWO
	ADDITOL VXW 6393
111	Texanol
IV	ADDITOL VXW 6388
ı v	Methoxypropanol
	Slurry
V	BECKOPOX EP 2384w/57WA

BECKOPOX EH 2261w/41WA

Salt spray test after 168 hours

Untreated steel panels (Gardobond OC) Drying primer 24 h before topcoat application DFT: 50-60 μm / 40-50 μm (Primer / Topcoat)

4

ACURE AQTM

Future developments & value proposition

allnex


COMING SOON: A HIGH PERFORMANCE PRIMER FOR ALUMINIUM AND STEEL

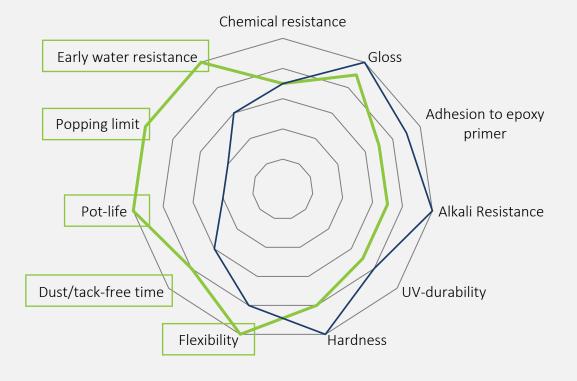
Neutral Salt Spray Test: 2-layer system

ACURE™ AQ Red Topcoat (REC20042)

Primer based on NEW wb 2K epoxy/amine system

24 hours drying of the primer layer @ 23 °C / 50 %RH

Key features of new primer system


- Excellent corrosion performance on sandblasted steel and sandblasted aluminium
- Fast drying properties

ACURE™ AQ – VALUE PROPOSITION

While the system offers unique benefits in terms of early property development, popping limit and pot-life, there are some parameters which have to be taken into consideration to identify the most suited application.

With ACURE AQ we will enable the coatings industry to overcome some of the key shortcomings of 2K WB PU systems enabling a broader penetration in markets like ACE, RAIL, TRANSPORT and lowering overall VOC emissions in the coatings industry, which is one of the key commitments in the allnex sustainability strategy.

GREENER BY NATURE

ACURE™ hits all five of allnex's sustainability pillars

ENERGY EFFICIENCY Reduction in curing energy due to the speed of Michael addition chemistry and our unique blocked catalyst

CIRCULAR ECONOMY

Reduced paint waste from longer pot lives, enabled by ACURE™'s unique blocked catalyst

AIR EMISSIONS

VOC levels lower than incumbent systems

SAFER MATERIALS ACURE™ AQ don't require isocyanate, tin, formaldehyde or other materials of concern for curing

BIO CONTENT POTENTIAL

THANK YOU FOR JOINING OUR WEBINAR!

Questions?

Oliver Truchses
TS&BD Leader General Industry &
Protective EMEA

oliver.truchses@allnex.com

Gottfried Fuerpass
Senior Lab Leader Technology EMEA
gottfried.fuerpass@allnex.com

https://acure-coating-resins.com/allnex-fast-curing-waterborne-2k/

LEGAL NOTICES

Disclaimer: allnex Group companies ('allnex') exclude all liability with respect to the use made by anyone of the information contained herein. The information contained herein represents allnex's best knowledge but does not constitute any express or implied guarantee or warranty as to the accuracy, the completeness or relevance of the data set out herein. Nothing contained herein shall be construed as conferring any license or right under any patent or other intellectual property rights of allnex or of any third party. The information relating to the products is given for information purposes only. No guarantee or warranty is provided that the product and/or information is suitable for any specific use, performance or result. Any unauthorized use of the product or information may infringe the intellectual property rights of allnex, including its patent rights. The user should perform his/her own tests to determine the suitability for a particular purpose. The final choice of use of a product and/or information as well as the investigation of any possible violation of intellectual property rights or misappropriation of trade secrets of allnex and/or third parties remain the sole responsibility of the user.

Notice: Trademarks indicated with *, TM or * as well as the allnex name and logo are registered, unregistered or pending trademarks of Allnex Netherlands B.V. or its directly or indirectly affiliated allnex Group companies.

©2020 allnex Group. All Rights Reserved.

