
### **Adaptive Compounding**

Challenges & Innovative Technology for Compounds Based on Mechanically Recycled Polymers

September, 25th 2025

Webinar

### **Meet Your Speakers**





Pascal Schaller
Head of Sales

- Master's degree in Mechanical Engineering
- Experienced professional in the automotive and chemical industry
- Outdoor adventure enthusiast





#### **Sven Wichmann**

Business Development Manager Industrial EMEA

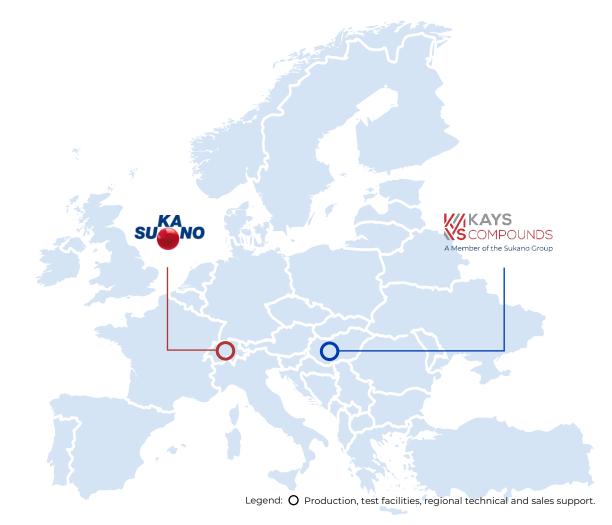
- Master's degree in Business Engineering
- Multiple business development positions for consumer, building and automotive
- Global food and culture explorer







| 1 | Meet Sukano Group                     | 4 | Adaptive Compounding                                 |
|---|---------------------------------------|---|------------------------------------------------------|
| 2 | Drivers supporting recycled materials | 5 | Positive sustainability impact of recycled compounds |
| 3 | Recycling Technologies                | 6 | Business cases                                       |




### **Meet Sukano Group**

We aspire to redefine masterbatch and compounding excellence in polyesters, biopolymers, and specialty resins — integrating recycled content and technical expertise, creating sustainable value for our customers, our planet, and our society.

**Sukano:** Leading position in Packaging, expansion into Consumer Durables, Building & Construction, Fibers, and Healthcare for masterbatches and specialized compounds.

**KAYS:** Specialized in Mobility, E&E, Furniture, and Building & Construction with engineering plastics compounds containing recycled materials.



### **Drivers & Trends Supporting Recyclates**

### Regulatory Framework Driving Recycled Materials Adoption

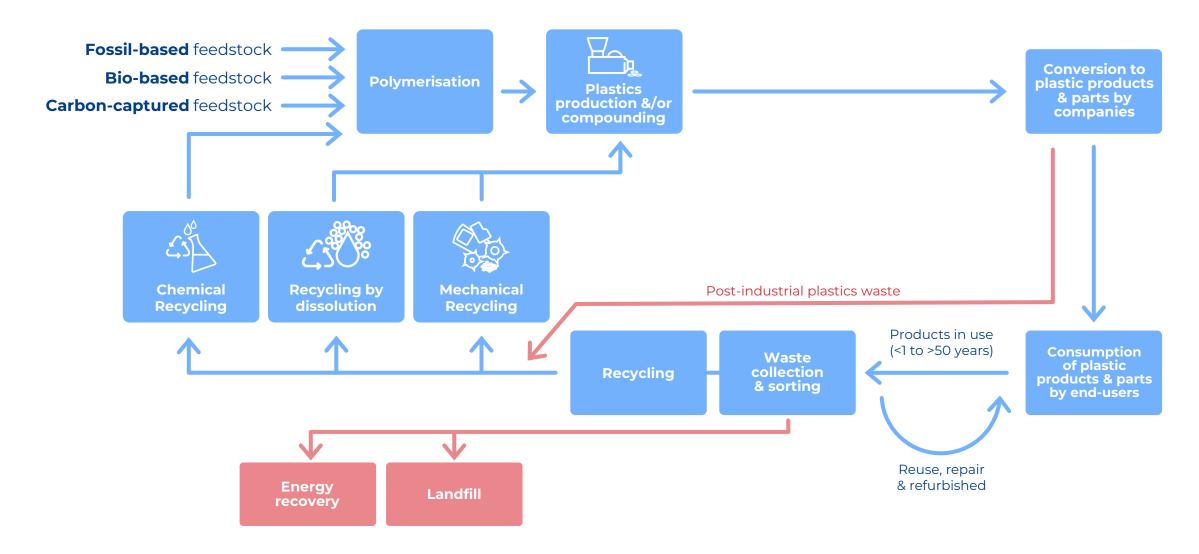
#### End-of-Life Vehicles (ELV) Directive (under revision)

- Regulation on circularity requirements for vehicle design and on management of ELV recycled content targets
- September 9<sup>th</sup> 2025: minimum of 20% of plastic recycled from postconsumer plastic waste. These 20% recycled content targets can also be met with max. 10% of pre-consumer waste

#### **Ecodesign for Sustainable Products Regulation (ESPR)**

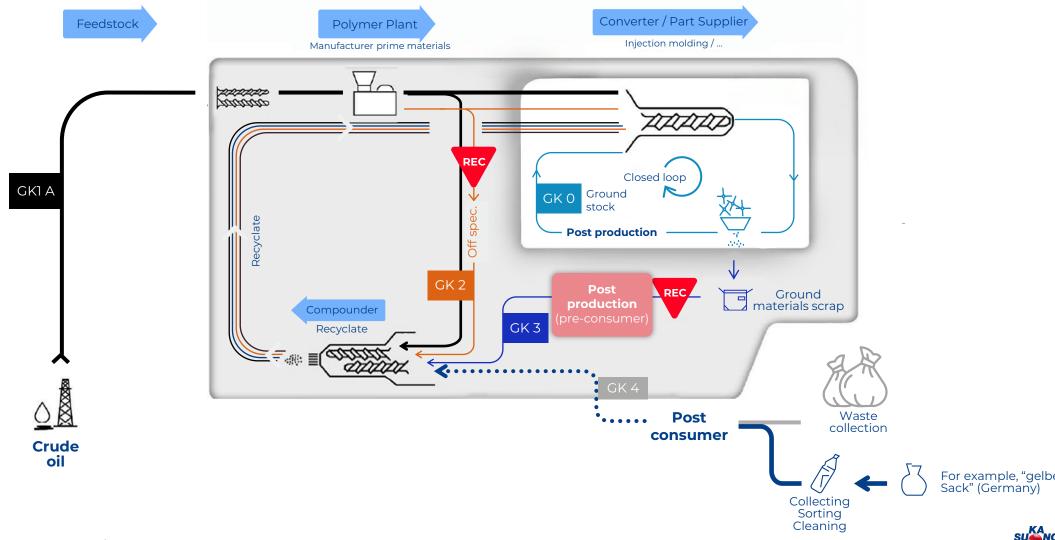
- Framework for setting minimum recycled content and circularity requirements
- Will apply to nearly all consumer durables

#### **Construction Products Regulation (CPR)**


 Revised regulation includes potential mandates for recycled content in construction materials

#### Packaging and Packaging Waste Regulation (PPWR)

Binding recycled content targets for plastic packaging by 2030 and beyond




### Recycling Technologies Overview



### The Different Types of Feedstock

PIR: post-industrial GK3 / PCR: post-consumer GK4





### What is your actual experience level with recycled materials?

(Multiple Answers Question)

- a) Scouting phase
- b) Re-use of production waste (in-house loop)
- c) At validation phase of recycled materials (PIR/PCR)
- d) Already in use of recycled materials (PIR/PCR) in serial production
- e) No experience so far

### What is "Adaptive Compounding"?

### Development steps for Tailormade Compounds

#### **Challenges of engineering recyclates**

- Recyclates can vary a lot in quality, color, and properties due to:
  - Mixed sources (e.g. packaging, automotive, electronics)
  - Aging and previous use
  - Contaminants presence and quality mainly due to inconsistent polymer types



#### What we can offer

- Strategic raw material sourcing and selection for consistent quality
- Incoming material inspection (e.g. melt flow, color, rheology testing, mechanical properties, thermal, physical, contamination)
- Finetune the compounding recipe
- Customize performance of recycled compound with virgin polymers and additives

### "Adaptive Compounding" Development

Critical Steps to Overcome the Challenges of PIR

#### **Availability Post Industrial Recyclate (PIR)**

- Injection molding wastes
- Extrusion molding wastes (limited quantity)
- Blow molding (usually directly re-used)

#### **Constraints PIR**

- Limited Sources
- Quality Consistency
- Type of Contaminations
- o Presence of multiple fillers, colors, additives, etc.
- Multimaterial



Kays knowhow and expertise

Robust processes to select supplier, material and in depth material inspection to avoid contamination of incompatible polymer are key in adaptive compounding



### "Adaptive Compounding" Development

Critical Steps to Overcome the Challenges of PCR

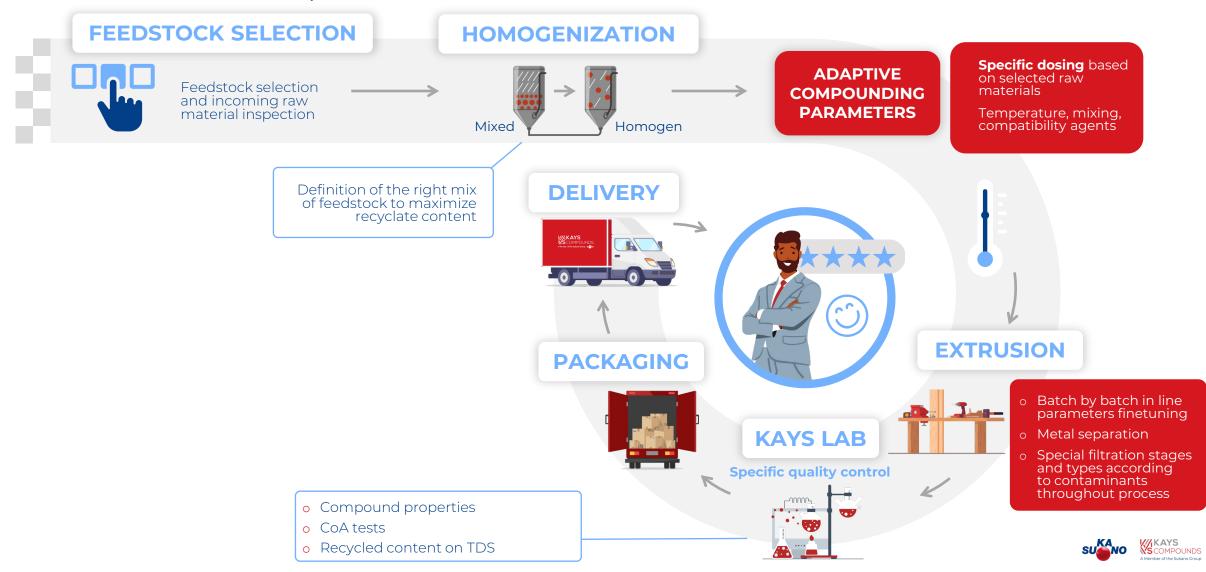
#### **Availability Post Consumer Recyclate (PCR)**

- Fishing nets (PA6)
- Textiles
- Household appliances (WEEE Waste Electrical and Electronic Equipment)
- Yellow bags
- End of life Vehicles (ELV)

#### **Constraints PCR**

- Limited sources for some polymers
- Polymer ageing (ELV ca. 15years)
- Quality Consistency
- Type of Contaminations
  - Feedstock source
  - Odor, Emissions
- Collection costs

Kays knowhow and expertise




Robust processes to select supplier, material and in depth material inspection to avoid contamination of incompatible polymer are key in adaptive compounding



### **Kays Unique Technique and Process**

Benefit from Experience and Knowhow



### **Color Masterbatch Lab**

#### Tailored Solutions



#### **Challenges of recyclates**

#### **Thermal & UV degradation**

→ inherent yellowness of recycled clear polymers

#### **Purity of the recyclates**

→ presence of incoming black specks

#### **Presence of multiple pigments**

> color shades must be carefully selected

#### **Color variations, pigment concentrations**

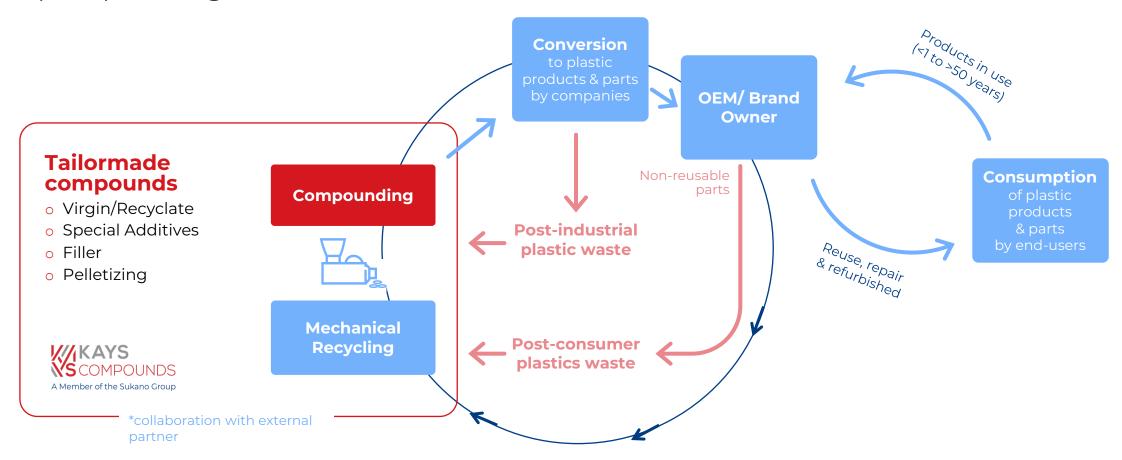
→ adaptive formulations

Availability and continuity of recyclates supply

**Variety of incoming recyclates**: importance of selection and tests of recyclates



Kays methods ensure stable recycled colors by overcoming these challenges


Expertise in colorants selection





# Additional Possibility for Adaptive Compounding

Repurposing Your Waste into New Products





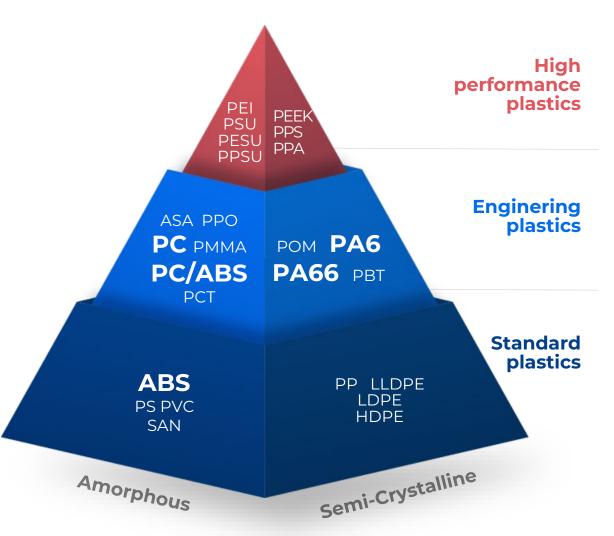
## What is the most common market request for product carbon footprint reductions? (Single Answer Question)

- a) So far we have no target in place
- b) At least 30%
- c) At least 50%
- d) At least 70%
- e) 100%



### What kind of certifications will you need in the next 3 years?

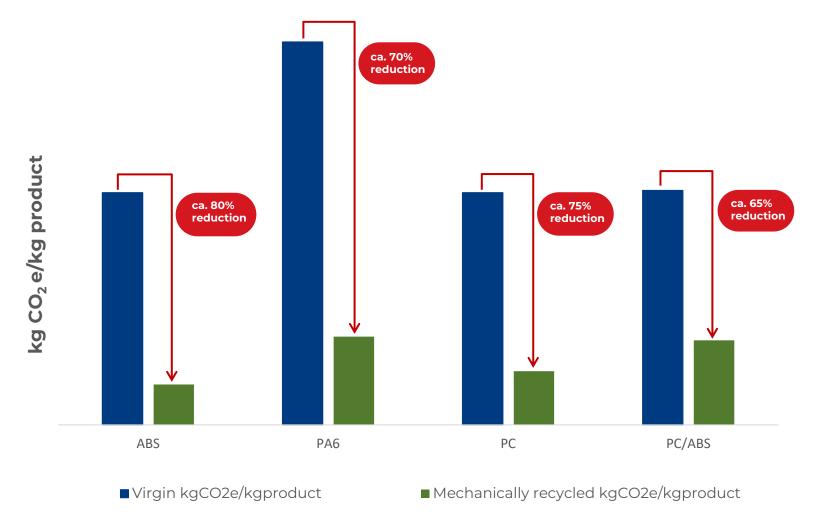
(Multiple Answer Question)


- a) Recyclate contents self declaration
- b) Recyclate content third party declaration
- c) Carbon footprint declaration
- d) LCA declaration
- e) ISCC+
- f) None



### **Tailormade Compound Applications**

#### Material Focus


| Main<br>Applications | Mobility | Building &<br>Construction | Consumer<br>Durables |
|----------------------|----------|----------------------------|----------------------|
| ABS                  | Χ        | X                          | x                    |
| PA6 – PA66           | X        | x                          | x                    |
| PC                   | Χ        | x                          | X                    |
| PC/ABS               | x        | x                          | X                    |





### Carbon Footprint per Polymer Group

Positive Impact of Mechanical Recycled Material





### **Business Case Scenario Automotive**

#### Rear View Mirror



#### **Application Requirements**

- High dimensional stability
- Strict flowability control
- Excellent vibration resistance
- High stiffness and impact absorption

Material reference: Kaycom PA6 GF501

Product Carbon Footprint reduction of more than 70% achieved

| Typical Properties                                                                                                                                                                           | Standard         | Unit    | Typical Value |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|---------------|
| Mechanical: Tensile Modulus (2mm/min) @ 23°C Tensile Strength (5mm/min) @ 23°C Tensile Strain at break (5mm/min) @ 23°C Flexural Modulus (2mm/min) @ 23°C Flexural Strength (2mm/min) @ 23°C | ISO 527-2        | MPa     | 13500-9400    |
|                                                                                                                                                                                              | ISO 527-2        | MPa     | 135-110       |
|                                                                                                                                                                                              | ISO 527-2        | %       | 2.5-3.8       |
|                                                                                                                                                                                              | ISO 178/A        | MPa     | 13000/9000    |
|                                                                                                                                                                                              | ISO 178/A        | MPa     | 205/155       |
| Impact: Charpy unnotched impact strength <sup>2</sup> @23°C Charpy notched impact strength <sup>2</sup> @23°C                                                                                | ISO 179/1eU      | KJ/m²   | 50/70         |
|                                                                                                                                                                                              | ISO 179/1eA      | KJ/m²   | 8/18          |
| <b>Granular Material Class</b> According to VW 50026                                                                                                                                         | VW 50026:2020-10 | GK1 (39 | 9%) GK3 (61%) |



### **Business Case Scenario Automotive**

### Rear Seat Tray



#### **Application Requirements**

- Durable
- Lightweight
- High impact resistance
- Good stiffness

Material reference: Kaycom PC-ABS<sup>1</sup>

Product Carbon Footprint reduction of more than 65% achieved

| Typical Properties                                                                                                                                          | Standard         | Unit    | Typical Value |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|---------------|
| Mechanical: Tensile Modulus (1mm/min) @ 23°C Tensile Strength (50mm/min) @ 23°C Tensile Strain at break (50mm/min) @ 23°C Flexural Modulus (2mm/min) @ 23°C | ISO 527-2        | MPa     | 2150          |
|                                                                                                                                                             | ISO 527-2        | MPa     | 50            |
|                                                                                                                                                             | ISO 527-2        | %       | 30            |
|                                                                                                                                                             | ISO 178/A        | MPa     | 2150          |
| Impact: Charpy unnotched impact strength <sup>2</sup> @23°C Charpy notched impact strength <sup>2</sup> @23°C                                               | ISO 179/1eU      | KJ/m²   | N.B.          |
|                                                                                                                                                             | ISO 179/1eA      | KJ/m²   | 25            |
| <b>Granular Material Class</b> According to VW 50026                                                                                                        | VW 50026:2020-10 | GK1 (10 | 0%) GK3 (90%) |



### **Business Case Consumer Durables**

### Coffee Maschine Housing



#### **Application Requirements**

- High stiffness and impact resistance
- Good flowability
- Low warpage
- Defect free surface finish
- Homogenious color appearance (jet black), delta E <1

Material reference: Kaycom ABS<sup>1</sup>

| Typical Properties                                                                                                                                          | Standard         | Unit  | Typical Value            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|--------------------------|
| Mechanical: Tensile Modulus (1mm/min) @ 23°C Tensile Strength (50mm/min) @ 23°C Tensile Strain at break (50mm/min) @ 23°C Flexural Modulus (2mm/min) @ 23°C | ISO 527-1,2      | MPa   | 2200                     |
|                                                                                                                                                             | ISO 527-1,2      | MPa   | 40                       |
|                                                                                                                                                             | ISO 527-1,2      | %     | 8                        |
|                                                                                                                                                             | ISO 178          | MPa   | 2200                     |
| <b>Impact:</b> Charpy unnotched impact strength <sup>2</sup> Charpy notched impact strength <sup>2</sup>                                                    | ISO 179/1eU      | KJ/m² | 85                       |
|                                                                                                                                                             | ISO 179/1eA      | KJ/m² | 15                       |
| <b>Granular Material Class</b> According to VW 50026                                                                                                        | VW 50026:2020-10 | •     | %) GK3 (45%)<br>K4 (50%) |

Product Carbon Footprint reduction of more than 80% achieved



# The Future is in Our Hands Road to Circularity with Plastics

- Transition from virgin to recyclate
- Save Plastics scrap from incineration or landfilling

Let's meet at K2025 to discuss how you can switch from virgin to recyclate for your application

Visit us at K2025 Hall 8A / Booth H28





## Thank You for Your Attention! We are Happy to Answer Any Questions You May Have.



KAYS
S COMPOUNDS
A Member of the Sukano Group

Pascal Schaller

Head of Sales

pascal.schaller@kays.hu



SUKANO

**Sven Wichmann** 

Business Development Manager Industrial EMEA

sven.wichmann@sukano.com





#### Sukano AG

Chaltenbodenstrasse 23 8834 Schindellegi, CH +41 44 787 57 77 emea@sukano.com

#### Sukano Sdn Bhd

No.7 Jalan Hasil Kawasan Perindustr. 81200 Johor Bahru, MY +60 7 238 60 99 apac@sukano.com

#### Sukano Polymers Corp.

295 Parkway East Duncan SC 29334, USA +1 864 486 3681 americas@sukano.com

#### Kays Kft.

Régi Veszprémi út 14-16 9028 Győr, HU +36 96 517 285 info@kays.hu

#### Connect with Sukano Group today



sukano.com



kays.hu



linkedin/sukano



in linkedin/kays

Sukano does not take any responsibility or liability for the use, accuracy and completeness of the information offered, or of any product or method mentioned, and you must make your own determination of its suitability and completeness for your own use, for the protection of the environment, and for the health and safety of your employees. The responsibility regarding the observance of third-party rights in the course of a subsequent processing and marketing of Sukano products lies with the buyer.