DIRT-PICKUP RESISTANCE IN LOW T_g ELASTOMERIC COATINGS

Robert Sandoval, Ph.D.

EPS – Engineered Polymer Solutions R&D Technical Director

UL Prospector WebinarOct. 2021

EPS® Overview

Resins

Architectural Coatings

Industrial Coatings

Construction

Colorants

Architectural

Industrial

Core business competencies in resins and colorants

- Water based emulsions for architectural, wood and increasingly for industrial coatings
- Polyester resins for coil, packaging, and general industrial coatings
- Colorants for In-Plant and Point-of-Sale market

Business mainly in North America and growing in Europe and Asia

We serve customers who are leading formulators of high-performance technology driven coatings

- Dirt-pickup resistance (DPUR) is a key requirement for exterior coatings.
- DPUR can impact aesthetics, but more importantly, it can significantly impact building energy costs in roof coating applications
- Agenda
 - DPUR in soft elastomeric roof coatings
 - Traditional means to improve DPUR
 - New resin technology in soft elastomeric coatings

What is a Roof Coating?

RCMA (Roof Coatings Manufacturers Association)

 Roof Coating: A fluid-applied adhered coating used for roof maintenance, roof repair, or as a component of a roof covering system or roof assembly

Cool Roof Coatings

 A roof coating that has been designed to reflect more sunlight and absorb less heat than a standard roof – www.energy.gov

Typical Benefits of Cool Roof Coatings

Economic

- Less energy required for cooling
- Peak Energy Use Reduction
- Repair and /or coat vs tear off and replace
- Federal and local tax deductions

Sustainable

- Protect the roof surface by providing a low-cost, sacrificial layer that absorbs the punishment of the elements
- Extends the life of the roof indefinitely Can recoat to refresh the surface
- Reflective roof coatings reduce surface temperatures
- Avoids building or occupant disruption and roof replacement

What's in the Coating Formulation?

Raw Material	Pounds
Water	155
Dispersant	3
Ammonia	3
Defoamer	1
TiO2	90
Calcium Carbonate	370
Defoamer	2
Acrylic Latex	450
(55% solids, 45% water)	100
Coalescent	7
Biocide/Fungicide	11
Glycol	11
Cellulose Thickener	3
Total	1162

Parameter	Value
Wt% solids	65
Vol% solids	51
PVC	40
VOC, g /liter	41
wpg	11.6

Three varieties of acrylic roof coatings

- ASTM D6083 Type I (-26 °C low temp. flex)
- ASTM D6083 Type II (-10 °C low temp. flex
- General Purpose (no specification)

Low temperature flexibility mainly driven by resin choice

Study Overview

- Formulation Modifications
 - PVC
 - Additives
 - Fluorosurfactant
 - Wax
- Resin Modifications
 - Glass Transition Temperature (T_a)
 - Incumbent resin technology
 - New resin technology
- "Real world" DPUR results
- Silicone roof coatings

Red Iron Oxide Slurry Testing

- Standard accelerated testing for Dirt-Pickup resistance
- Cure samples
 - Room temperature curing (3 days)
 - QUV for 7 days
- Apply a red iron oxide slurry
- Allow to dry
- Lightly rinse with water and wipe with cheesecloth

PVC Ladder

Modification of formula with PVC does not dramatically alter the DPUR

Resin T_g : +9 °C

Specialty Additives

Control Δ*E*: 47.99

Wax Δ*E: 47.53*

Fluorosurfactant ΔE: 44.84

- Wax additives
- Fluorosurfactant
 - Fluorinated materials are under increasing scrutiny
- Minimal to no impact of additives on DPUR

T_g Ladder with polymers

 T_a : -32°C

ΔE: 52.37

 T_a : +9°C

ΔE: 25.14

 T_a : +56°C

ΔE: 9.98

- Higher Tg polymers tend to perform better for dirt-pickup resistance
 - What happens if you need a low Tg polymer?
 - ASTM D-6083 Type I (-26 °C low temperature flexibility)
 - ASTM D-6083 Type II (-10° C low temperature flexibility)
 - What if you need low VOC?

Benzophenone

- Known in the art to add to resins and coating formulations to improve dirt-pickup resistance
- Benzophenone is activated by UV light and abstracts a hydrogen from the acrylic resin
- Crosslinking occurs between radicals at surface of coating
- Benzophenone may trigger Prop 65 labeling requirements
- Benzophenone is a VOC according to ASTM D-6886 (methyl palmitate GC method)
- Benzophenone is disclosed on an SDS
- Solid at room temperature, not trivial to add to a coating formulation

Benzophenone (Diphenyl ketone)

EPS® Dirt-Pickup Resistance Technology

Incorporate technology into multiple resins at "high" and low T_g

Resin ID	Measured T _g (°C)	Dirt-pickup resistance technology
Comparative C	-32	None
EPS EXP 1	-26	EPS DPUR
Comparative E	-26	None
Comparative A	-26	Benzophenone
EPS EXP 2	-10	EPS DPUR
Comparative D	-10	None
Comparative B	-10	Benzophenone

What about "real world" dirt-pickup resistance?

EPS® Exterior Exposure Program

Exterior Laboratory: Develop polymers with superior exterior performance / durability

- Commercial paint benchmarking
- Paint formulation variables
- Mimic real-world surface preparation (lack of)
 - Weathered SYP
 - Chalky substrates (ASTM chalk rating of 5)

Offer Differentiated Polymer Technology w/ Direct-to-Substrate Performance

- ✓ DPUR (dirt-pickup resistance)
- ✓ Gloss retention
- Highly alkaline substrates
- ✓ Inherent stain-blocking
- ✓ Adhesion

EPS® Exposure Fence Locations

Los Angeles, CA

Marengo, IL

Ft Myers, FL

Average Temperature (°F)

Average Precipitation (inches)

Initial

Panel Section	1	2	3	4	5	6
Sample	Comparative A	EPS EXP 1	Comparative E	Comparative B	EPS EXP 2	Comparative C
T_g	-26°C	-26°C	-26°C	-10°C	-10°C	-32°C
DPUR	None	EPS DPUR	Benzophenone	Benzophenone	EPS DPUR	None

Silicone Comparison

EPS Acrylic

Sample	EPS EXP 1
T _g	-26°C
DPUR	EPS DPUR

ΔE: 3.90

Commercial Silicone Coating

ΔE: 3.34

- Silicone coating shows low ΔΕ
- Silicone roof coatings typically show poor DPUR performance in the field
- Red iron oxide slurry has water carrier → silicone coating is very water resistant

Silicone Comparison – Dirt particulate

- Lab DPUR evaluated using a dry dirt particulate
- Sample with dirt cured in oven and light even pressure applied
- Sample tapped to remove excess dirt
- Silicone coating using a dry dirt particulate elicits very poor DPUR in the lab

EPS DPUR Acrylic T_g -26°C

Dirt Particulate ΔE: 6.75

Silicone Coating

ROX Δ*E*: 3.34

Dirt Particulate

Additives – Dirt Particulate

ΔE: 27.81

ΔE: 29.39

Fluorosurfactant

ΔE: 13.46

EPS EXP 2

ΔE: 6.74

- Wax additives
- Fluorosurfactant
 - Greater improvement in DPUR using dry dirt particulate → Longterm regulatory concerns
- EPS resin technology shows improved DPUR with no formulation modifications and a softer resin

Summary of Results

Concept	Comments
Use of higher T _g resins	 Higher VOC Certain roof coating requirements require Low Temperature Flexibility (-10°C or -26°C)
Incorporation of Unique Additives	Increased regulatory scrutinyModest or little to no impact on DPUR
Adjust PVC of formula	No strong improvementsSignificant formulation changes
Utilize resins containing benzophenone	 Small to moderate impact on DPUR Prop 65 → Potential regulatory scrutiny
Use of alternate chemistries such as silicone coatings	Water resistantPoor DPUR using non-aqueous dirt particulateCost
EPS Dirt-Pickup Technology	 Large impact on DPUR, even at very low T_g No formulation modification necessary → Technology built into resin DPUR confirmed with exterior exposures

EPS® Resins with Dirt-Pickup Resistance Technology

EPS 2719

General purpose roofing

EPS 2741

Architectural Flat-SG

EPS 2799

Architectural Flat-HG

EPS 2720

Architectural Satin-HG

EPS 2570

- Industrial maintenance
- Direct-to-Metal

Sample requests:

- 1. EPS Products Page epscca.com/en/products/
- 2. Click on each product page

```
+ Compare SDS TDS + Order Sample
```


QUESTIONS?

Contact Information:
Robert.Sandoval@eps-materials.com

Technical Contributors

Formulating and Testing: Alejandra Hernandez **Synthesis:** Jonathan Wang, Ashley Rodgers **Exterior Exposure Testing:** Dr. Pat Lutz

