

UL-WEBINAR:

CUSTOMISED SILICONE SOLUTIONS FOR THE ELECTRICAL AND ELECTRONICS INDUSTRY

AGENDA

- 1. About WEVO-CHEMIE
- 2. Choosing the right base chemistry
- 3. Silicones: Definition, production, properties
- 4. WEVOSIL product groups
- 5. Defining your own optimal WEVOSIL solution
- 6. Summary/takeaways

ABOUT WEVO-CHEMIE

WEVO-CHEMIE GMBH

AN INDEPENDENT FAMILY-OWNED COMPANY WITH AN INTERNATIONAL PRESENCE

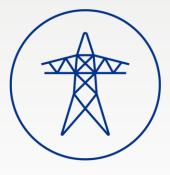
capsulation

We are the experts for all encapsulation applications and for special-purpose bonding and sealing applications.

Our resin systems are mainly used in electrical and electronic components – especially in automotive electronics.

OUR INDUSTRIES CUSTOMISED RESIN SYSTEMS

CUSTOMISED RESIN SYSTEMS FOR ELECTRICAL AND ELECTRONIC COMPONENTS


Automotive

Home

Engineering

Energy

CUSTOMISED PRODUCTS AND SERVICES

Product tailoring

Testing and application support

Aftersales service

Flexible logistics

CERTIFICATIONS AND PRODUCT APROVALS

Wevo-Chemie is committed to supplying innovative products and services that comply with regulations and standards on chemicals and their safe use.

COMPREHENSIVE PROTECTION

SILICONE SOLUTIONS FROM WEVO PROTECT SENSITIVE COMPONENTS AGAINST:

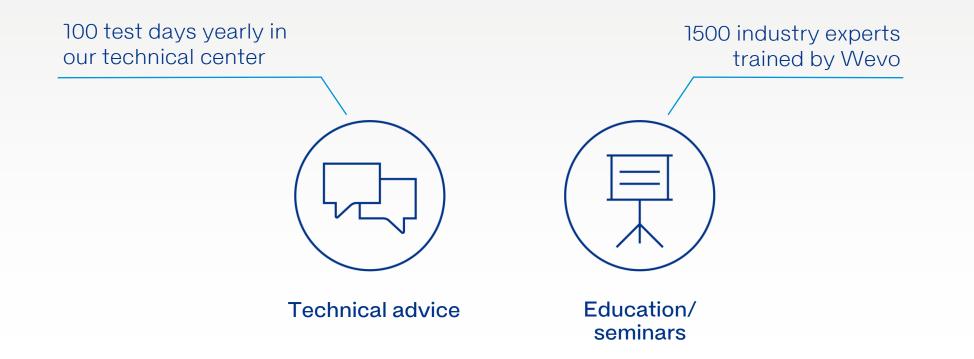
Chemicals

Vibrations

Particles

Temperature

Dust



Humidity

KNOWLEDGE TRANSFER

At Wevo, technical and chemical experience is complemented by the knowledge gained from numerous practical applications.

CHOOSING THE RIGHT BASE CHEMISTRY

PRODUCT PORTFOLIO

THREE PRODUCT CHEMISTRIES FOR CUSTOMISED SOLUTIONS – FOR EVERY REQUIREMENT

WEVOPUR

Balanced systems with highly configurable profile

WEVOPOX

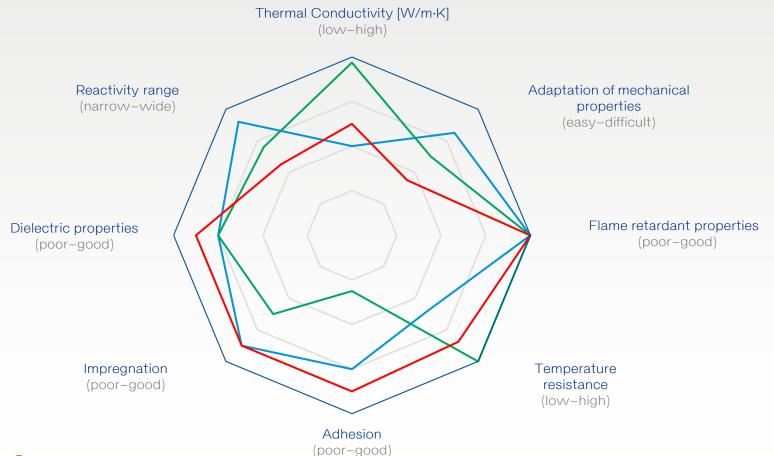
High-strength systems with high thermal stability

WEVOSIL

High-elasticity systems with high thermal stability

COMPARISON OF PU, EP AND SIL

To help our customers select the right materials, we considered the generics of each chemistry.


PARAMETER	POLYURETHANE	EPOXY	SILICONE
Room temp. cure	Yes	Yes	Yes
Heat temp. cure	Yes	Yes	Yes
Rigid (D90+)	No	Yes	No
Semi-rigid (D60-85)	Yes	Yes	No
Elastomeric (A60-80)	Yes	No	Yes
Gel (<a40)< td=""><td>Moderate</td><td>No</td><td>Yes</td></a40)<>	Moderate	No	Yes
hermal conductivity	Yes	Yes	Yes
- lame retardant	Yes	Yes	Yes
Electrical properties	Excellent	Excellent	Excellent
Repairability	Possible	Difficult/Impossible	Possible

The table shows that today's advancement in material design has created a degree of parity across the three main base chemistries.

These base chemistries fulfil similar requirements, e. g. curing profiles, flame retardancy and electrical properties. However, each chemistry typically incurs a technical trade-off to achieve certain specifications.

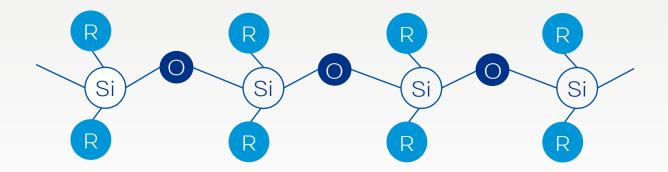
PUR, POX AND SIL: THE COMPARISON AT A GLANCE

SILICONES:
DEFINITION,
PRODUCTION,
PROPERTIES

WHAT ARE SILICONES?/1

Terminology:

- Silicon: the metalloid chemical element with the symbol Si and atomic number 14 ("Silicium")
- Silicone: a synthetic inorganic polymer made up of siloxane $(R_3Si-[O-SiR_2]_n-O-SiR_3$, where R = organic group)
- (Poly)Siloxanes with R=CH₃ are called polydimethylsiloxanes (PDMS)


Image source: Silicon metal, Wevo

WHAT ARE SILICONES?/2

The high bond energy between the silicon and oxygen atoms of siloxanes compared with an organic polymer backbone is responsible for the high temperature and UV resistance of silicone materials:

- Si-O bond: 451 kJ/mol
- C–C bond: 352 kJ/mol
- UV energy (sunlight): 315-400 kJ/mol

KEY GENERAL PROPERTIES OF SILICONES (CURED)/1

- High temperature resistance (all silicones up to 180 °C; with additives, special formulations up to 250–300 °C)
- High radiation resistance (incl. microwaves & UV); transparent or translucent if unfilled and uncoloured
- Constant electrical (insulating) properties across the very wide temperature range from -45 °C to +180 °C
- Nearly constant mechanical (elastomeric) properties across the very wide temperature range from -55 °C to +180 °C
- Adjustable adhesive or release properties (by means of the formulation)
- Thermal conductivity adjustable over a very broad range
- Low T_g: ~ −55 °C

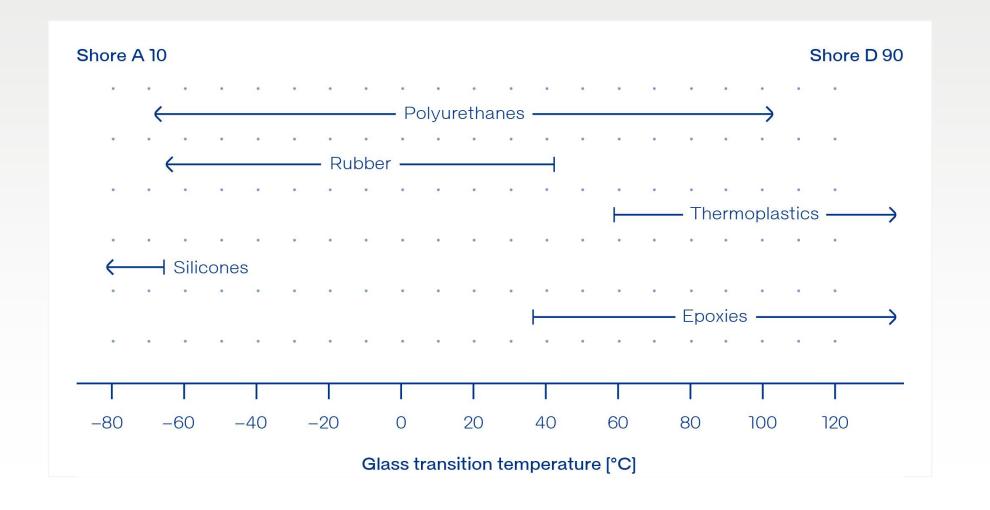
KEY GENERAL PROPERTIES OF SILICONES (CURED)/2

- Biocompatible, non-toxic, non-hazardous
- Hydrophobic; low moisture absorption
- High gas permeability
- Excellent fire/burning behaviour: low toxicity of smoke and fumes; flame-retardant grades are possible
- Very good resistance to weathering (outdoor applications), corona discharge and ozone

APPEARANCE OF SILICONES WHEN CURED

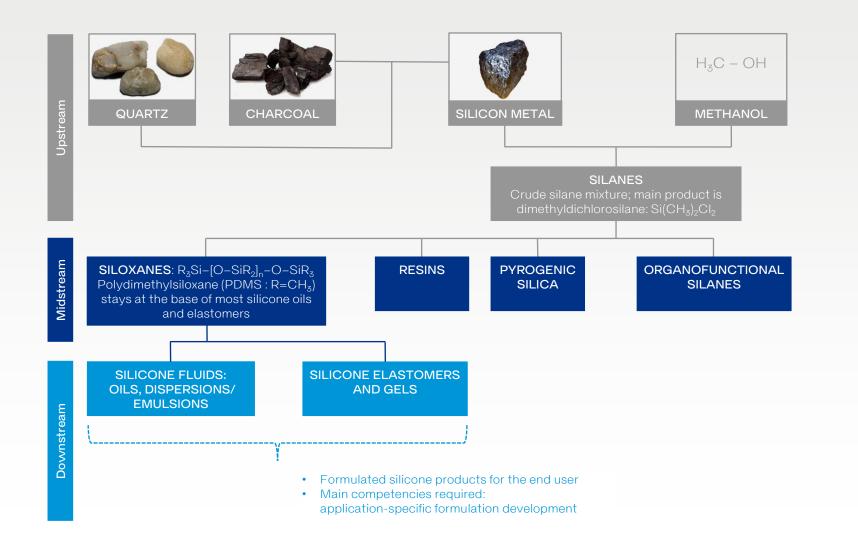
- Hardness
 - Extra soft: gels → penetration
 - Typical: Shore A range
- Not even experts are always able to say precisely which uncured system has been used to produce a certain vulcanisate with a typical Shore A hardness
- The lighter test to prove whether something that appears to be a silicone, is indeed a real one or it's e.g. a TPE:
 - Silicone will form a white ash and will self-extinguish shortly if it catches fire at all
 - Thermoplastic materials will actually burn, stay on fire, melt and leave dark, foul-smelling ash

Image source: Adobe Stock



SHORE A HARDNESS SCALE

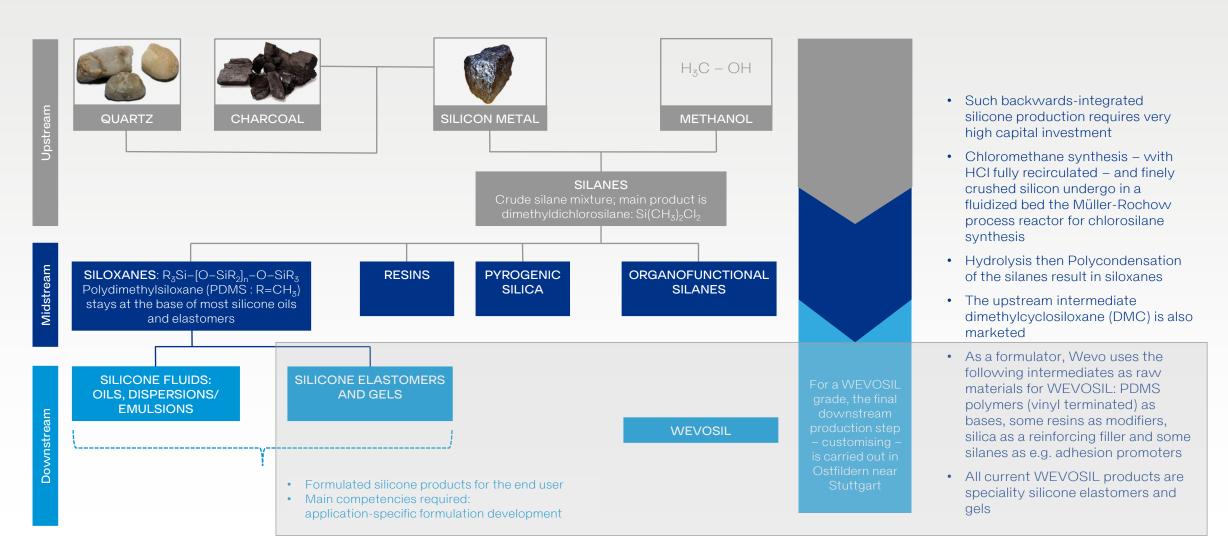
	Extra soft								Soft					Medium				Hard					
Shore A	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95			
Shore D							6	7	8	10	12	14	16	19	22	25	29	33	39	46	60	75	90
Shore 00		45	55	62	70	76	80	83	86	88	90	91	93	94	95	97	98						


GLASS TRANSITION TEMPERATURE

VO-CHEMIE GmbH | Slide 22

wevo

PRODUCTION OF SILICONES



- Such backwards-integrated silicone production requires very high capital investment
- Chloromethane synthesis with HCl fully recirculated – and finely crushed silicon undergo in a fluidized bed the Müller-Rochow process reactor for chlorosilane synthesis
- Hydrolysis then Polycondensation of the silanes result in siloxanes
- The upstream intermediate dimethylcyclosiloxane (DMC) is also marketed
- As a formulator, Wevo uses the following intermediates as raw materials for WEVOSIL: PDMS polymers (vinyl terminated) as bases, some resins as modifiers, silica as a reinforcing filler and some silanes as e.g. adhesion promoters
- All current WEVOSIL products are speciality silicone elastomers and gels

VO-CHEMIE GmbH | Slide 23

wevo

PRODUCTION OF SILICONES

POSSIBILITIES TO CLASSIFY THE SILICONE ELASTOMERS

By mixing ratio:	• 1K (HCR, RTV-1) • 2K (HCR, LSR, RTV-2): 1 : 1, 9 : 1, 10 : 1, 100 : 1, 100 : 1.5, etc.
By appearance/viscosity when uncured:	Solid (HCR = HTV)Liquid (LSR, RTV-1, RTV-2)
By curing system:	 Peroxide curing (HCR) Condensation curing (RTV-1, RTV-2) Addition-(platinum) curing (HCR, LSR, RTV-2)
By curing temperature:	 Room-temperature vulcanising (RTV-1, RTV-2) High-temperature vulcanising (HCR, LSR)
By application area:	 Rubber parts with silicone as their raw material Auxiliary material to obtain a specific effect (protection, adhesion, gap filling, insulation)

 $[\]rightarrow$ It will never be possible to reach a 100 % clear distinction, there will always be crossovers and exceptions found

MECHANICAL PROPERTIES OF SILICONES BY PRODUCT CLASSES

		RTV-2	LSR	HCR
Hardness	Shore A	Gel-50	5–85	10–90
Elongation at break	%	100–1000	300-900	300–1200
Tear resistance	N/mm	8-25	15–45	20-55
Tensile strength	N/mm²	2–6	5–10	6–12
Compression set	%	30-70	8–25	10–40
Rebound resilience	%	20–50	40-60	35-65
Density	g/cm³	0.7–3: function of	filler type & amounts (typic	cally 1-1.6)
Viscosity	mPa⋅s			

APPLICATION FIELDS OF HCR & LSR SILICONES

Automotive

- Spark plug boots
- Pencil coils
- Vibration dampers
- Connector seals
- Exhaust pipe hangers
- Turbocharger hoses
- Gaskets
- Cables

Food & household

- Bakeware
- Oven door gaskets
- Coffee machine tubing
- Washing machine bull's eye gaskets
- Dishwasher gaskets
- Tubing

Technical textiles

- Airbags
- Conveyor belts
- Architectural membranes
- Antislip: gloves, carpets
- Tents
- Paragliders
- Safety clothing

Cables

- Fire safety cables
- Battery cables
- Ignition cables
- EV/HEV cables
- General purpose cabels

Lighting

- Moulded lens
- Light guides
- Gaskets

Transportation

- Profiles
- Bellows (railway & buses)

Lifestyle

Baby care

Pacifiers

articles

Baby-bottle teats

Breastfeeding

- Diving masks
- Sport & fashion articles

• Catheters

Medical

- Tubing
- Seals, valves, membranes
- Respiratory care

Industrial

- Window profiles
- Keypads
- Moulded & extruded articles

Electrical energy

- Insulators
- Cable accessoires
- Insulator coatings

Water management

- Irrigation
- Sanitary

APPLICATION FIELDS OF RTV SILICONES

Automotive

- Power train
- · Seals & gaskets
- Dampers
- Head- and taillights
- Control units
- Sensors
- Actuators

Electronics

- Automotive electronics
- Consumer electronics
- Power modules
- Chargers

Lighting

optics

Controllers

Optical bonding

E-mobility

- Battery management
- Fuel cells
- Electric motors
- Cables & connectors
- On-board chargers

Textile industry

- Antislip coatings
- Technical textiles
- Wearables

Energy & Electrical

- Solar applications
- Wind power
- Hydro power
- · Subsea oil & gas
- Metering

Fire safety

- Cable & pipe duct seals
- Seat cushions

Appliances

- Steam irons
- Dishwashers
- Ovens
- Kitchen hoods
- Hobs
- Filters

Health care

- LED primary optics
 Prosthesis
- LED secondary Wound care
 - Drug delivery
 - Implants
 - Medical electronics

Moulding & mould making

- Prototyping
- Reproductions
- Tampon (pad) printing
- Composites
- Construction moulding

Transportation

- Heavy duty vehicles
- Railway
- Marine
- Aerospace

Food industry

- Heat resistant coatings
- Antislip coatings

→ Other uses are also possible (e.g. moulded parts or coatings)

[→] WEVOSIL grades were primarily introduced for casting, bonding and sealing applications

RTV-2: ADDITION OR CONDENSATION-CURING?

1. Addition-(Pt) curing		2. Condensation-(moisture) curing	
Advantages	Disadvantages	Advantages	Disadvantages
No by-products $ ightarrow$ No smell, no corrosion	Less robust regarding adhesion and inhibition	Excellent adhesion on nearly all substrates	Shrinkage due to the formation of decomposition by-products (~ 3 %)
No shrinkage (< 0.1 %) → Dimensional stability	Surface treatment very often necessary for good adhesion	Not sensitive to inhibition (much less than addition curing in comparison)	Decomposition by-products are formed (alcohol/oxime/amine/acetic acid)
Curing is possible in closed systems Does not require atmospheric moisture Uniform curing in volume/mass		Curing speed can be adjusted over a wide range by means of the mixing ratio and the use of different catalysts	No significant acceleration by heat is possible
Curing speed can be adjusted over a wide range through the proper use of catalyst and inhibitor		Fast curing is possible to achieve (also in thicker layers)	Corrosion risk with certain by-products
Curing can be greatly accelerated by heat		Both components "fillable"	Unpleasant smell of by-products
Rheology, hardness and reactivity can be adjusted over a wide range			
Both components "fillable" → Mixing ratio of 1:1 is possible			

RTV-2: ADDITION OR CONDENSATION-CURING?

1. Addition-(Pt) curing		2. Condensation-(moisture) curing	
by-products → No smell, no corrosion Less readhesi shrinkage (< 0.1%) Dimensional stability ring is possible in closed systems es not require atmospheric moisture form curing in volume/mass	Disadvantages	Advantages	Disadvantages
No by-products $ ightarrow$ No smell, no corrosion	Less robust regarding adhesion and inhibition	Excellent adhesion on nearly all substrates	Shrinkage due to the formation of decomposition by-products (~ 3 %)
No shrinkage (< 0.1 %) → Dimensional stability	Surface treatment very often necessary for good adhesion	Not sensitive to inhibition (much less than addition curing in comparison)	Decomposition by-products are formed (alcohol/oxime/amine/acetic acid)
Curing is possible in closed systems Does not require atmospheric moisture Uniform curing in volume/mass		Curing speed can be adjusted over a wide range by means of the mixing ratio and the use of different catalysts	No significant acceleration by heat is possible
Curing speed can be adjusted over a wide range through the proper use of catalyst and inhibitor		Fast curing is possible to achieve (also in thicker layers)	Corrosion risk with certain by-products
Curing can be greatly accelerated by heat		Both components "fillable"	Unpleasant smell of by-products
Rheology, hardness and reactivity can be adjusted over a wide range			
Both components "fillable" → Mixing ratio of 1:1 is possible			

^{ightarrow} Conclusion: Addition curing for WEVOSIL

APPLICATIONS/1 - POTTING: PROTECTION FOR ELECTRONICS

Protection	Appearance	Sil.	Mechanical	Corro-	Water,	Electrical	Design /	Durability	Heat
	(can be	class	protection	sion and	humidity,	arcs	IP	and	dissipation
	partial)		(impact,	particles	chemicals		security	resilience	
			vibrations)						
Potting/		RTV-2	+++	+++	+++	+++	+++	+++	+++

Potting / Encapsulation

		1
	6	

APPLICATIONS/2 - BONDING: DISPENSING SILICONE GASKETS

Gasket type	Appearance	Sil. class	Applied by	Curing	Adhesion	Assembly	Repair	Sealing method
Preformed gasket		HCR, LSR	Inserting	Before assembly	None	Dry	Possible	Compression
CIPG (cured in place gasket)		RTV-1, RTV-2	Dispensing	Before assembly	One side	Dry	Possible	Compression
FIPG (formed in place gasket)		RTV-1, RTV-2	Dispensing	After assembly	Both sides	Wet	Impossible	Adhesive bond

APPLICATIONS/2 - BONDING: DISPENSING SILICONE GASKETS

Gasket type	Appearance	Sil. class	Applied by	Curing	Adhesion	Assembly	Repair	Sealing method
Preformed gasket		HCR, LSR	Inserting	Before assembly	None	Dry	Possible	Compression
CIPG (cured in place gasket)		RTV-1, RTV-2	Dispensing	Before assembly	One side	Dry	Possible	Compression
FIPG (formed in place gasket)		RTV-1, RTV-2	Dispensing	After assembly	Both sides	- Wet	Impossible	Adhesive bond

^{WEVOSIL 28001 and WEVOSIL 28002 – as well as further self-adhesive WEVOSIL grades under development – are suitable for CIPG and FIPG applications}

WHERE IS THE LINE?

- There is no completely clear-cut line between the materials used for producing moulded articles and those used to obtain a certain effect by dispensing:
 - Protection, sealing, adhesion
- Therefore, basically it is also possible to produce moulded articles from a WEVOSIL potting compound
- So although quite similar in terms of their basic structure, WEVOSIL formulations are optimised for the specific requirements of our customers by their:
 - Rheology
 - Processing window
 - Electrical, thermal and mechanical properties

Image source: Adobe Stock

WORKING WITH WEVOSIL

the framework of a project in

justified cases

Mixing ratio	Filler sedimentation	Exothermy
1:1 parts by weight	Filled systems are prone to	Unlike with PU and epoxy
This is always roughly the same for volume parts, too, but weight parts are to be used	sedimentation of the filler over a longer period of time, in both components	systems, very little heat develops as silicones cure
This ratio must be adhered to in order to achieve the specified product performance	In order to avoid an excess or a lack of reactive components and achieve a proper curing, both components need	Therefore, all energy required must be transferred to the system from outside
Tolerance is +/- 2 %	to be homogenised before use	
Developing a different mixing ratio (e.g. 9:1 or 10:1) is possible within	All WEVOSIL grades are free of silicone oils → all of the polymeric	The curing speed is the same for a droplet or for a kg of the

material that might float to the top of

the container is reactive material!

material

VVEVOSIL PRODUCT GROUPS

PRODUCT OVERVIEW SILICONE CASTING RESINS (as of Nov 2021)

WEVOSIL COMPONENT.	A/B	20201	20001	20002	27001 FL	28001	22006 FL	22002 FL	22005 FL	22007 FL	22008 FL	26001 FL	26011 FL	26008 FL	26010 FL	26009 FL	26007 FL	26020 FL
Mixing ratio (parts by weight)		1:1	1:1	1:1	1:1	1:1	1:1	1:1	1:1	1:1	1:1	1:1	1:1	1:1	1:1	1:1	1:1	1:1
Mixed viscosity at 22°C [mPa·s]	Rotational visco- meter/rheometer	300-700	1,000-1,500	15,000-35,000	4,000-8,000	30,000- 60,000	2,000-2,800	2,500-4,000	4,000-8,000	10,000 – 20,000	4,000-8,000	paste-like						
Reactivity at 22°C [min]*	Rotational visco- meter/rheometer	50-70	50-70	120–150	50-60	60-90	90-120	50-70	50-70	50-70	50-70	50-70	50-70	50-70	50-70	50-70	50-70	50-70
Density of component A/B at 22°C [g/cm³]	DIN EN ISO 2811-1:2016-08	0.96-1.00	0.96-1.00	0.99-1.04	1.10-1.14	1.28-1.32	1.36–1.40	1.65–1.70	2.28-2.32	2.29-2.33	2.79-2.83	2.28-2.32	2.02-2.06	2.84-2.88	2.18-2.22	2.89-2.93	3.02-3.06	3.10-3.12
Shore hardness 00/A/D	DIN ISO 7619-1:2012-02	gel	/ 35–45 /	/ 25–35 /	/ 25–35 /	/ 70-80 /	/ 47–55 /	/ 35–45 /	/ 55–65 /	60-80 / /	50-70 / /	50-70 / /	60-80 / /	50-70 / /	60-80 / /	60-80 / /	60-80 / /	60-80 / /
Operating temperature [°C]		-60 up to +200	-60 up to +180	-60 up to +180	-60 up to +250	-60 up to +200	-60 up to +180	-60 up to +180	-60 up to +180	-60 up to +165	-60 up to +200	-60 up to +180	-60 up to +165	-60 up to +200	-60 up to +165	-60 up to +200	-60 up to +200	-60 up to +200
E modulus [N/mm²]	DIN EN ISO 527-2:2012-06	-	1.7	1.0	1.5	4.5	4	2	6.4	1	0.25	0.7	0.6	0.6	1.2	1	0.8	0.6
Thermal conductivity [W/m·K] (pressureless)	DIN EN ISO 22007-2:2015-12	0.2	0.2	0.2	0.2	0.3	0.6	1.0	1.5	2.0	2.2	1.5	2.2	2.0	2.5	2.5	3.0	3.5
Thermal conductivity [W/m·K] (0.55 Mpa = 80 PSI = 5.5 bar)	ASTM D 5470-12	_	-	-	_	0.70	1.00	1.60	2.00	2.30	2.80	1.90	2.20	2.50	3.00	3.00	3.50	4.00
Melting point [°C]***	TMA ISO 11359-2:1999-10	< -50	< -40	< -50	< -50	< -55	-50	-45	-45	-50	-55	-45	-50	-45	-55	-50	-55	-50
Coefficient of expansion [ppm/K] > melting point***	TMA ISO 11359-2:1999-10	400	330	300	400	210	240	200	160	120	135	180	115	135	110	125	55	120
Water absorption [%]	30 days, 22°C	_	< 0.2	< 0.3	< 0.3	< 0.2	< 0.2	< 0.1	< 0.2	3.64	< 0.3	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.1
Flammability	UL 94	НВ	НВ	НВ	V-0	V-1	V-0 4 mm ^{orox}	V-0 2 mm ^{®®}	V-0	V-0	V-0	V-0	V-0	V-0	V-0	V-0	V-0	V-0
Dielectric strength [kV/mm]	DIN EN 60243-1:2014-01	23	> 25	> 25	> 25	> 30	33	24	30	> 16	> 19	> 19	> 20	> 20	> 15	> 19	> 15	> 20
Volume resistivity [Ω·cm]	DIN EN 62631-3-1:2017-01	> 1014	> 1014	> 1015	> 1014	> 1014	> 1014	> 1014	> 1010	> 1011	> 1015	1010	> 1018	> 1013	> 1018	> 1014	1O14	> 1013
Dielectric constant ε (at 50 Hz, 23°C)	DIN EN IEC 62631-2-1:2018-12	-	2.7	2.7	2.7	3.1	3.8	4.5	5.2	6.7	5.8	5.3	5.4	7.4	6.1	7.7	7.5	7.0
Loss factor tan δ (at 50 Hz, 23°C)	DIN EN IEC 62631-2-1:2018-12	_	0.004	0.008	0.009	0.013	0.065	0.060	0.048	0.112	0.010	0.020	0.070	0.140	0.044	0.150	0.057	0.019

All application parameters refer to processing at room temperature. All mechanical, thermal and electrical properties are based on complete curing.

The indicated range of pot life corresponds with current standard versions. Adjustment of pot life is possible.

"Unlisting under file No. E108850 ""Melting point spring into action, if cold-orystalization occurred at temperatures lower -60°C.

PRODUCT GROUPS

The overview shows an excerpt of our different silicone product groups:

Gels

Optically clear

High temperature resistance

Adhesives (2-component addition)

General-purpose encapsulation/potting

Thermally conductive encapsulation/potting

Thermally conductive gap fillers (pasty)

Flame retardancy

Chemical resistance

(WEVOSIL 202XX)

(WEVOSIL 200XX)

(WEVOSIL 27XXX)

(WEVOSIL 28XXX)

(WEVOSIL 22XXX)

(WEVOSIL 22XXX)

(WEVOSIL 26XXX)

(WEVOSIL XXXXX FL)

(no own nomenclature)

wevo

GELS

WEVOSIL 20200 Series

- Viscosities of all gel systems below 500 mPa·s
- Penetration hardness is adjustable at customer's request
- Slight colouring possible at customer's request
- Gel with higher adhesion to nearly all substrates than inner strength
- All gel systems fulfil SVHC declaration (SVHC < 0.1 % cyclic siloxanes D4–D6)
- All gel systems have an operating range from -60 °C up to +180 °C

In development

- Low-temperature silicone gel down to -80 °C without cold-crystallisation, but not based on phenyl methyl polymers (price range similar to standard gels)
- Silicone gel with 1.0−1.5 W/m·K thermal conductivity

Application

Coating/encapsulation/potting of sensitive electronics

- Lower viscosities than the standards in the market
- Slight colouring also possible
- Penetration hardness adjustable
- Gel with higher adhesion than the inner strength and natural "tackiness"

OPTICALLY CLEAR

WEVOSIL 20200 Series

- All clear systems have an operating range from -60 °C up to +180 °C
- High stability to yellowing
- High UV resistance

WEVOSIL 20001

- Low viscous system for potting or for molded parts
- Yellowing stable up to +180 °C

WEVOSIL 20002

- · For applications with high mechanical demand
- Good basic adhesion without need for primer for nearly all substrates
- Highly viscous, but still self-levelling properties
- Yellowing stable up to +140 °C

Application

Potting of LED stripes/optical lenses


HIGH TEMPERATURE RESISTANCE

WEVOSIL 27001 FL

- Operating range from -60 °C up to +250 °C
- Mechanical performance after > 2,000 hours 250 °C > 50 % (e.g.: elongation at break)
- Thermal conductivity < 0.25 W/m·K suppression of heat spreading, suppression of "thermal runaway" of e.g. battery cells
- No toxic burning products

Application

- Safety coating/potting of battery cells or parts nearby
- Potting of electronics with need for high long-term temperature stability

PRODUCT MOTIVATION

 Thermal mitigation/ suppression of "thermal runaway"

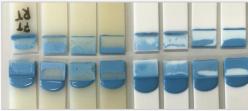
ADHESIVES (2K ADDITION)

WEVOSIL 28000 Series

- Operating range from -60 °C up to +200 °C
- No shrinkage
- No cure byproducts
- No pretreatment or primer necessary

WEVOSIL 28001

- Adhesion > 6 MPa on nearly all substrates
- Potting adhesive with self-levelling properties


WEVOSIL 28002

- Adhesion > 1 MPa on nearly all substrates
- Sealing material

Application

Adhesive for potting or sealing, with high temperature requirements

- Adhesive without cure byproducts
- No shrinkage
- Low-danger labelling
- No pretreatment or primer necessary


GENERAL-PURPOSE ENCAPSULATION/POTTING

WEVOSIL 22006 FL

- Operating range from -60 °C up to +180 °C
- Low viscosity for good flow behaviour
- Good mechanical and electrical properties
- UL certification (all colour registration)
- Suitable for ATEX applications

Application

- Encapsulation of all kind of electronics
- Potting of transformers
- Encapsulation of battery packs

- General purpose
- UL certified
- ATEX compliant

THERMALLY CONDUCTIVE POTTING UP TO 1.5 W/M·K

WEVOSIL 22002 FL / 22004 / 22005 FL

- Flowable potting resins (all viscosities < 8,000 mPa·s)
- Increased thermal conductivity up to 1.5 W/m·K (Hot-disk measurement pressureless and also ASTM D5490 measurement 0.069 MPa)
- All Shore hardnesses approx. A: 30–60

WEVOSIL 22004

Adhesion > 1 MPa on nearly all substrates without hot-curing

WEVOSIL 22005 FL

• Flevated basic adhesion > 1 MPa after 1 hour at 100 °C

Application

Encapsulation of all kinds of electronics where higher thermal conductivity is needed

PRODUCT MOTIVATION

 Increasing thermal conductivity of standard encapsulation materials

wevo

THERMALLY CONDUCTIVE POTTING UP TO 2.8 W/M·K

WEVOSIL 22007 FL

- Flowable under pressure (viscosity < 20,000 mPa·s)
- Low density
- Temperature stable up to +165 °C
- Thermal conductivity up to 2.0 W/m·K (Hot-disk measurement pressureless)
- Thermal conductivity up to 2.2 W/m·K (ASTM D5490 Measurement 0.069 MPa)
- Soft (Shore 00: 50-80) → harder version possible

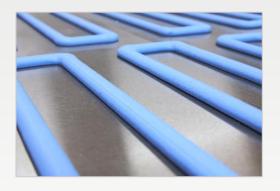
WEVOSIL 22008 FL

- Flowable under pressure (viscosity < 8,000 mPa·s)
- Temperature stable up to +200 °C
- Thermal conductivity up to 2.2 W/m·K (Hot-disk measurement pressureless)
- Thermal conductivity up to 2.8 W/m·K (ASTM D5490 measurement 0.069 MPa)
- Soft (Shore 00: 50–80) \rightarrow harder version possible

Application

• Thermal management where a soft yet low-viscous material is required, power electronics

- Increasing thermal conductivity to a maximum, where flowability is still needed
- Soft for sensitive applications


THERMALLY CONDUCTIVE GAP FILLER HIGH TEMPERATURE

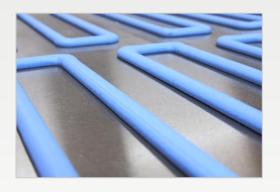
WEVOSIL 26007 FL / 26008 FL / 26009 FL / 26020 FL

- Temperature stable up to +200 °C
- Thermal conductivity up to 3.5 W/m·K (Hot-disk measurement pressureless)
- Thermal conductivity up to 4.0 W/m·K (ASTM D5490 measurement 0.069 MPa)
- Reduced abrasiveness/dosing rates higher than 5 mL/second possible
- Good mechanical properties (e.g. elongation at break)
- Bond line thickness < 100 μm

Application

- Thermal management for battery applications
- Power electronics

- Standard gap fillers with different thermal conductivities
- All systems available in cartridges
- No stir up necessary for minimum 3 months
- Reduced abrasiveness


THERMALLY CONDUCTIVE GAP FILLER LOW DENSITY

WEVOSIL 26001 FL / 26010 FL / 26011 FL

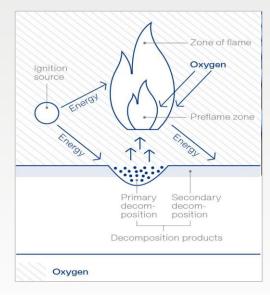
- Temperature stable up to +165 °C
- Low density
- Thermal conductivity up to 2.5 W/m·K (Hot-disk measurement pressureless)
- Thermal conductivity up to 3.0 W/m·K (ASTM D5490 measurement 0.069 MPa)
- Reduced abrasiveness /dosing rates higher than 5 mL/second possible
- Good mechanical properties (e.g. elongation at break)
- Bond line thickness < 150 μm

Application

Thermal management for battery applications

- Low density
- Standard gap fillers with different thermal conductivities
- All systems available in cartridges
- No stir up necessary for minimum 3 months
- Reduced abrasiveness

wevo


FLAME RESISTANCE

WEVOSIL products with "FL" at the end of the name

- Different kinds of flame retardancy
 - Active, by adding fillers/additives with flame retardant properties
 - Passive, by adding fillers in high concentrations
- With regard to passive flame retardancy we are in discussion with UL to test the properties on coated alumina sheets, and also with regard to customer applications and mechanical properties where it is a challenge to produce shoulder bars for tests when super soft mechanical properties are required
- It is also possible to test UL 94 H class and H5A burning test, which are not standard in the silicone market with regard to gap filler applications

Application

Any application where flame retardancy is necessary

- Burning behaviour or flame retardancy after UL 94 V class
- As thin as possible, especially with regard to gap fillers where small gaps will be standard for thermal management

CHEMICAL RESISTANCE

WEVOSIL 28001

- Due to high crosslinking density and the use of special fillers, this product exhibits very high chemical resistance properties
- The benefits of 2K addition-curing silicone are still given:
 - No shrinkage
 - No cure byproducts
 - Optimised for high adhesion
- High temperature stability
- In use as adhesive in vanadium redox flow batteries
- Further information on examples and research projects: wevo_pi_redox_flow_battery_210120, wevo_ifbf_a4_word_201111, wevo_ifbf_poster_a3_201111

Application

Adhesive with high thermal and chemical resistance (self-levelling)

- High chemical resistance to concentrated acids and bases
- High chemical resistance to fuel cell electrolytes
- High chemical resistance to standard automotive liquids

INNOVATION WITH WEVOSIL

IN OUR R&D THERE IS ALWAYS WORK ONGOING TO DEVELOP UP-TO-DATE SOLUTIONS FOR CHALLENGES ENCOUNTERED BY OUR PARTNERS

Silicone gels with enhanced thermal conductivity

- Keep the outstanding mechanical damping properties of the silicone gels
- Combine these with thermal conductivity for better thermal management

Thermally conductive silicone adhesives

- Offer a stable mechanical bond while supporting heat dissipation
- Still easy to dispense

EMC/EMI shielding directly with silicones

- Develop electrically conductive or antistatic silicone grades with superior properties
- Combine adhesion with electrical conductivity
- Adjustable permittivity (dielectric constant) ε from 7 to > 20 for perfect shielding properties

Continuous screening of various fillers

- Further counteract the sedimentation tendencies of highly filled materials
- Control the rheology to achieve a desired flow behaviour at different viscosity values

DEFINING YOUR OWN OPTIMAL WEVOSIL SOLUTION

MODIFICATIONS OF STANDARD WEVOSIL PRODUCTS

Is pot life/reactivity adjustable?

- Yes, by adding more catalyst: from 1–2 minutes up to several hours
- Yes, by adding more retarder: from several hours up to 1-2 days (heat curing may be necessary)

Can mix viscosity be adjusted?

- Increasing the mix viscosity is easily possible (thixotropic effect)
- Limited means of decreasing the mix viscosity: choose another product

Can hardness be adjusted?

Yes, most of the products can be adjusted harder up to Shore A: 40–50 (new product)

Can temperature class be adjusted?

• No, choose another product

Can mechanical properties be adjusted?

• Yes, but limited (correlate with the hardness of the product); (new product)

CUSTOMER REQUESTS

In order to find the WEVOSIL product that best fits your needs, the following information is required:

• Ideally: a specification/requirement catalogue (necessary for automotive projects)

For new developments and where specifications are missing, we need five basic items of information before starting:

- Operating temperature range xxx °C (long-term)
- Flowable or thixotropic (range of viscosity) \rightarrow type of application
- Hardness
- Thermal conductivity
- UL classification necessary

For optically clear products, three further items of information are required:

- Colour stability; non-yellowing up to xxx °C
- UV resistance
- Transmission rate at wavelength of xxx nm

SUMMARY/ TAKEAWAYS

KEY TAKEAWAYS

- Wevo-Chemie is your reliable partner for electronic and electrical protective solutions based on silicones, polyurethane and epoxy
- Each chemistry is characterised by its individual advantages and limits
- We offer a great variety of tailor-made solutions for the safe operation of your E & E components
- Adapted properties such as increased temperature resistance and thermal conductivity –
 of our high-performance materials can cope with the increasing technical demands of emerging
 technologies like e-mobility, energy storage and smart grid applications
- Ask our global experts to discuss your individual projects and needs

THANK YOU VERY MUCH FOR YOUR ATTENTION!

Andrei Szabo

Market Manager Silicones
Phone +49 711 167 61-572 · andrei.szabo@wevo-chemie.de

WEVO-CHEMIE GmbH Schönbergstr. 14 · 73760 Ostfildern-Kemnat · Germany

wevo-chemie.com

The technical application-related advice that we provide verbally, in writing and through testing is provided to the best of our knowledge but must be regarded as non-binding information, among other things with reference to any third-party property rights, and does not exempt you from conducting your own checks on the products we supply to determine their suitability for the intended processes and purposes. The application, use and processing of the products are beyond our control and therefore exclusively your responsibility. Should an issue of liability arise nevertheless, such liability for all losses shall be limited to the value of the goods supplied by us and used by you. It goes without saying that we guarantee the impeccable quality of our products in accordance with our General Terms and Conditions.

Copyright 2022 WEVO-CHEMIE GmbH. All rights reserved. Unless otherwise indicated by name, all texts, images and graphics are subject to copyright and other laws for the protection of intellectual property. They may not be copied, changed or used in any other way.