Navigating Adhesive Formulation Challenges with Waterborne Acrylic Polymers

Robert Sandoval, Ph.D. R&D Technical Director

OCTOBER 2025

Agenda

Adhesives Overview - Chemistries, types, and market landscape

Vinyl Flooring Adhesives – Challenges and Technical Solutions

Permanent and Removable - Challenges and Technical Solutions

Low Surface Energy Substrates – Challenges and Technical Solutions

Tapes and Labels - Challenges and Technical Solutions

Sealants - Challenges and Technical Solutions

EPS Portfolio

Engineered Polymer Solutions

One of the largest water-based acrylic polymer manufacturers in North America

Access to broad range of polymers and product performance attributes

Proven ability to swiftly customize and engineer polymers for customer & market driven opportunities

Adhesives market segment is Strategic to EPS

Enhanced technological expertise

Exceptional formulation support **Application testing: Real-time exposure** data accelerates downstream development

Global Manufacturing Grid

Colorants Manufacturing Location

Eight strategically located plants in the US and one in The

Los Angeles, CA

Woodburn, OR Garland, TX

Netherlands

Rockford, IL

South Holland, IL

Marengo, IL

Chester, SC

Hagerstown, MD

Ambacht, NL

Responsive to emerging market needs

World-class acrylic emulsion manufacture **Commitment to quality** and technical service

Pressure Sensitive Adhesive Chemistries

PSA Definition

A material that holds two surfaces together solely by surface contact, which is achieved by slight external pressure.

Pressure Sensitive Adhesive	Advantages	Disadvantages
Rubber/Resin	 High tack/High peel Ability to bond to variety of substrates including non-polar low-surface energy substrates Economical 	
Acrylic	 Excellent temperature resistance Excellent UV resistance Good clarity Good color stability Bonds well to polar substrates 	Poor adhesion to low surface energy substrates
Silicone	 Adhesion to silicone and other hard to adhere substrates Excellent temperature resistance 	Overall low adhesive strengthExpensive

Acrylic PSA Types

Solvent based	Water-based	Hot Melt
	Advantages	
Quick drying	Easy cleaning	Very fast setting
Good adhesion to non-polar substrates	Good adhesion to polar substrates	No solvent waste
Good bond to plastics	High solids	100% active
	Disadvantages	
Flammability	Slower drying	High equipment costs
VOC	Requires heat to dry	Requires heat
Low solids content	Poor adhesion to non-polar substrates	Thermal degradation possible
Less easy to clean		Difficult to clean
		Temperatures can affect substrate

Adhesives Market Overview

Demand **Drivers**

Bonding the New Method of Choice - switching away from traditional fasteners

Downgauging

Multi-substrate adhesion

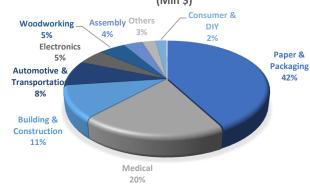
& aesthetic

High Growth Market Segments

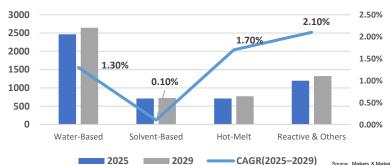
E-commerce - Packaging

Modular Construction

Consumer Goods


Key Opportunities

Packaging / Sealing / Harnessing Tapes


PSA Labels

Masking / Barrier / Protective Films

North America Adhesives & Sealants Market 2025 (Mln \$)

North America Adhesives & Sealants Market 2025 - 2029 (MIn lbs)

Source: Markets & Markets

Vinyl Flooring Adhesives Challenges

Plasticizer Migration Adhesive Failure
Due to Substrate
Conditions –
Moisture, Dust,
Uneven Surfaces

Temperature Sensitivity

Workability

Compatibility with Vinyl and Additives

Vinyl Flooring Adhesives Technical Solutions

EPS® 2133 delivers exceptional resistance to plasticizer migration and water exposure, making it the ideal adhesive solution for vinyl and rubber flooring.

It ensures long-lasting durability, even in moisture-prone environments, helping maintain bond integrity and reduce maintenance over time

Property	EPS [®] 2133	
Solids %	57	
рН	7.0 - 8.0	
Density Ibs/gal	8.7	
Tg °C	-34	

Sample	180° Peel 30 min dwell @ RT	180° Peel 24hr dwell @ 50C	Probe Tack	Static Shear 1"x1"x1Kg
EPS [®] 2133	43.1 oz/in	71.1 oz/in	485 g/cm	> 10,000 minutes
Facestock - 2mil PET		Substrate - PSTC Po Stainless Steel	lished	Coating Weight - ~16-17 lbs/ream

Vinyl Flooring Adhesives Plasticizer Resistance

LAP SHEAR - WET LAY-IN				
	Vinyl Flooring (LVT)			
Sample	7 days @ RT dwell	7 days @ 60°C		
Competitive Polymer	36.5 psi	29 psi		
EPS [®] 2133	27.3 psi	31.3 psi		
Substrate - Plywood Pull Rate - 0.5 inches/minute 1/16" spreader				

Lap Shear Dry Lay-in				
Commis	Vinyl Flooring (LVT)			
Sample	7 days @ RT	7 days @ 60°C		
Competitive Polymer	45.6 psi	68.9 psi		
EPS 2133	27.7 psi	40.6 psi		
Substrate - plywood Pull Rate 0.50 inches/min Dry Time - 6 hours @ RT				

Maintains adhesion at high temperature dwell

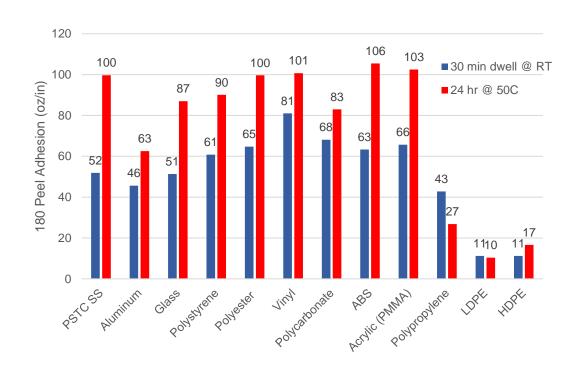
Vinyl Flooring Adhesives Water Resistance

Before

EPS® 2133

Competitive Polymer

2-Week DI Water Immersion


EPS® 2133

Competitive Polymer

Vinyl Flooring Adhesives Technical Solutions

Substrate	Failure Mode
PSTC SS	Adhesive
Aluminum	Adhesive
Glass	Adhesive
Polystyrene	Cohesive
Polyester	Cohesive
Vinyl	Cohesive
Polycarbonate	Cohesive
ABS	Cohesive
Acrylic (PMMA)	Cohesive
Polypropylene	Slipstick
LDPE	Adhesive
HDPE	Adhesive

Pressure Sensitive Adhesives

Permanent

Adhesives that cannot be removed once applied without causing damage to the substrate.

Peelable/Removable

Adhesive can be removed without damage to the substrate. Can still be difficult to remove because of strong adhesion.

Ultra-Peelable

Easy to remove and do not leave any residue. Typically used on glass and other substrates where residue is undesirable.

Tapes and Labels Challenges

Moisture and Humidity
Resistance

Peel, Shear, Tack **Balance**

Temperature Sensitivity

Substrate Compatibility

Surface **Defects**

UV Stability

EPS® 2127D is a high-solids acrylic copolymer emulsion designed for pressure-sensitive adhesive tape and label applications.

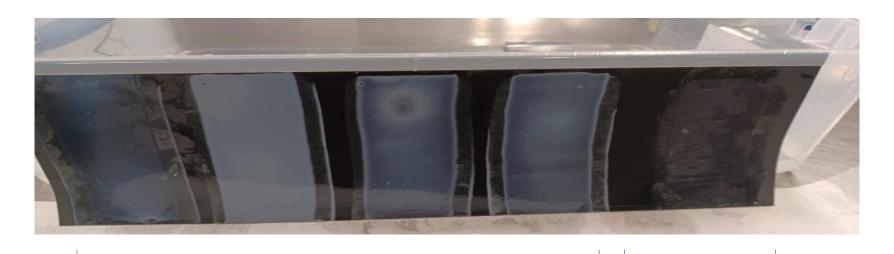
It delivers an exceptional balance of adhesive properties, making it suitable for use in both tackified and non-tackified formulations.

Property	EPS [®] 2127D
Solids %	60
рН	8.0 - 9.0
Density lbs/gal	8.45
Tg °C	-34

Sample	180° Peel 30 min dwell @ RT	180° Peel 24hr dwell @ 50C	Probe Tack	Static Shear 1"x1"x1Kg
EPS [®] 2127D	42 oz/in	50-75 oz/in	430 g/cm	> 2,500 minutes
Facestock - 2mil PET		Substrate - PSTC Polis Steel	shed Stainless	Coating Weight - ~16-17 lbs/ream

Sample	180° Peel 30 min dwell @ RT	180° Peel 24hr dwell @ 50C	Probe Tack	Static Shear 1"x1"x1Kg
Competitive Polymer A	37.7 oz/in	79.3 oz/in	350 g/cm	3700 minutes
Competitive Polymer B	52.6 oz/in	84.2 oz/in	570 g/cm	2800 minutes
EPS 2127D	71.3 oz/in	83.3 oz/in	372 g/cm	2000 minutes
EPS 2133	43.1 oz/in	71.1 oz/in	485 g/cm	> 10,000 minutes

Facestock - 2mil PET Substrate - PSTC Polished Stainless Steel Coating Weight - ~16-17 lbs/ream


X-Linker Level		180 ° Peel Adhesion	- 30 min @ RT Dwell	
A-LIIIKEI LEVEI	Competitive Polymer A	2127D		
0%	24.5 oz/in	30.1 oz/in	27.4 oz/in	29.0 oz/in
0.10%	15.9 oz/in	22.1 oz/in	24.1 oz/in	22.1 oz/in
0.25%	14.8 oz/in	19.7 oz/in	22.1 oz/in	18.8 oz/in
0.50%	13.6 oz/in	17.7 oz/in	17.2 oz/in	15.3 oz/in

X-Linker Level		24hr d	lwell @ RT	
V-FILIKEI FEAGI	Competitive Polymer A	Competitive Polymer B	2133	2127D
0%	26.3 oz/in	51.7 oz/in C	32.6 oz/in	49.4 oz/in
0.10%	18.4 oz/in	22.1 oz/in	28.8 oz/in	27.6 oz/in
0.25%	14.8 oz/in	20.3 oz/in	23.8 oz/in	25.1 oz/in
0.50%	11.9 oz/in	16.9 oz/in	19.3 oz/in	17.3 oz/in

Facestock - 2 mil LDPE Substrate - PSTC Stainless Steel Coating Weight - 6.5-7 lbs/ream

24 hr. water immersion

Competitive Polymers

EPS® 2127D

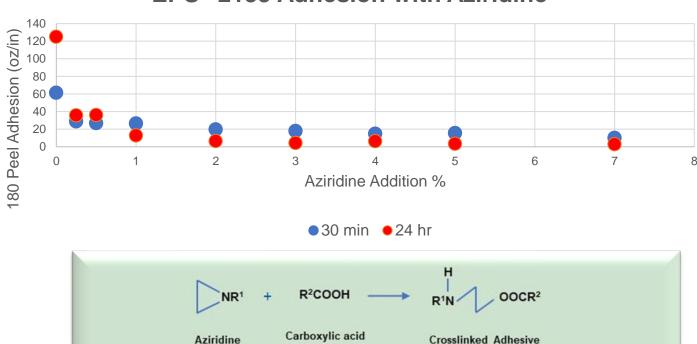
Removable Adhesives Challenges

Adhesion to Low Surface Energy (LSE) Substrates

Balancing Tack, Peel, and Shear Durability and Aging: thermal cycling, humidity and chemical exposure

Optical Clarity and Aesthetics

Adhesive Residue


- Over Anchoring

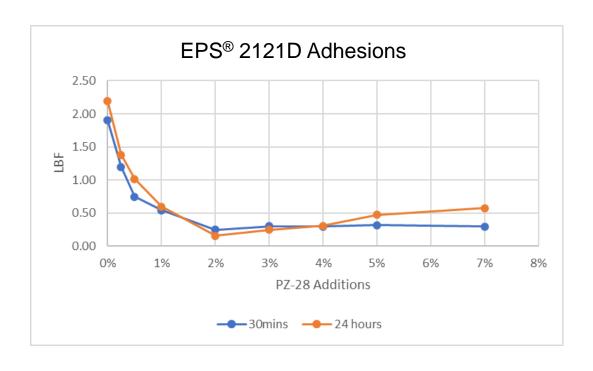
Adhesion to
Contaminated or
Textured Surfaces

Removable Adhesives Technical Solutions

EPS® 2133 Adhesion with Aziridine

functional acrylic

Removable Adhesives Technical Solutions


EPS® 2121D is a general-purpose all-acrylic emulsion for removable applications.

Exhibits low peel, moderate tack, and high shear values.

	Property	EPS [®] 2121D				
Solids %			50			
рН			7.0 - 8.0			
Density Ibs/gal			8.5			
Tg ℃			-32			
Sample	180 Peel (PSTC-101)	Loop Tack (PSTC-16)	Static Shear (1" x 1" x 1 kg)			
EPS 2121D	22.4 oz/in	36.8 oz/in	> 10,000 min			

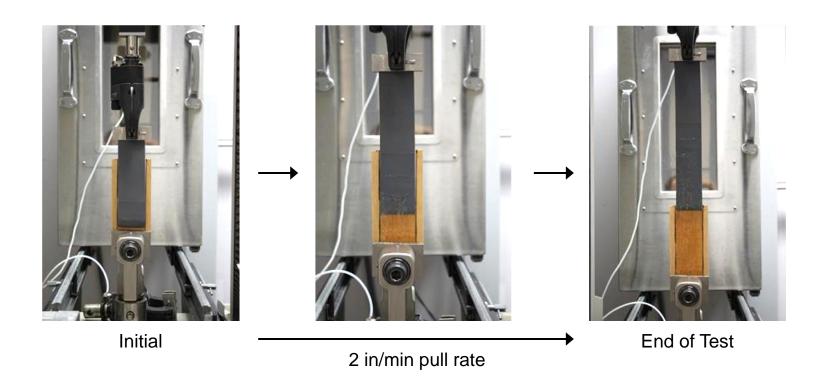
Removable Adhesives Technical Solutions

- Removable adhesive resin with inherently lower starting peels
- No adhesive residue upon weathering

Low Surface Energy Challenges

Substrate Variability

Low Surface Energy Challenges



- Unlike metal substrates, TPOs have no functionality that can be used to improve adhesion (i.e., acids, amines, hydroxyls, etc.)
- TPO membranes have other ingredients such as TiO₂, flame retardants, UV absorbers/stabilizers, processing aids

$$\begin{array}{c|c}
H & H \\
-C - C \\
H & H
\end{array}$$

Low Surface Energy Technical Solutions

Low Surface Energy Technical Solutions

EPS® 2252 is a high-solids acrylic emulsion designed to provide excellent adhesion to TPO and EPDM.

EPS[®] **2252** provides the capability to formulate coatings at <50 g/L VOC.

Property	EPS [®] 2252
Solids %	60
рН	8.0 - 9.0
Density lbs/gal	8.55
Tg °C	-32

Low Surface Energy Technical Solutions

Competitive Benchmark - 180° Peel Adhesion									
Sample	24hr dwell @ RT	Mode of failure	7-day dwell @ RT	Mode of failure					
WB Commercial Sample 1	4.1 pli	Adhesive	3.8 pli	Adhesive					
WB Commercial Sample 2	6.9 pli	Adhesive	4.5 pli	Adhesive					
WB Commercial Sample 3	5.3 pli	Cohesive	9.3 pli	Cohesive					
EPS 2252	9.5 pli	Cohesive	15.5 pli	Cohesive					
Solvent-based Commercial Sample 1	2.2 pli	Cohesive	8.5 pli	Cohesive					
Solvent-based Commercial Sample 2	2.5 pli	Cohesive	8.1 pli	Cohesive					
Solvent-based Commercial Sample 3	1.9 pli	Cohesive	10.3 pli	Cohesive					

Testing Conditions - 180° Peel Adhesion-Crosshead Speed 2 inches/minute
Spread Rate - 9 lbs/100ft²
45 mil new TPO
Substrate - Plywood

Sealants Challenges

Limited Elasticity and Movement Capability

Water Resistance

UV and Weathering Limitations

Shrinkage During
Cure

Adhesion Limitations on Non-Porous or LSE surfaces

Sealants - Technical Solutions

ASTM Test	Condition	Standard	EPS [®] 2133 Result	
C661 Shore Hardness	7 days @ 72°F/50% RH, 7 days @ 100°F, 7 days @ 72°F/50% RH	15 Shore A minimum	28 Shore A	
C732-Aging Effects of Artificial Weathering	7 days @ 72°F/50% RH, 500 hours QUV-A	Wash Out - none Slump – none Cracking – none Discoloration - as acceptable Adhesion Loss - 25% max	Pass	
C734 - Low-Temperature Flexibility after Weathering	2 days @ 72°F/50% RH, 500 hours QUV-A, 90° Bend over 1" mandrel at 0°C	No cracking through to substrate or adhesion loss	Pass	
C736 Extension and Recovery	7 days @ 73°F/50% RH, 7 days @ 50°C	Recovery - 75% min Adhesionh Loss - 25% max	0% Adhesion Loss/100% Recovery	
C793-Effects of Accelerated weathering	21 days @ 72°F/50% RH, 250 hours QUV-A, 180° Bend over a 0.5" mandrel @ -26°C	No cracking through to substrate	Pass	
C794 -Adhesion in Peel	7 days @ 72°F/50% RH, 7 days @ 100°F, 7 days @ 72°F/50% RH followed by 7-day DI Water Immersion	5 lbs/inch minimum	Mortar - 11.9 pli Aluminum - 10.5 pli, Glass - 12.1 pli	
C1183 Extrusion	5 Freeze Thaw Cycles (16hrs@0°F/8hrs@73°F), 7days@50°C	2 g/s minimum	13.3 grams/sec	
D2202 Slump	30 minutes @ 50°C	no greater than 0.15 inches	0.10 inches	

P:B - 1.5

EPS Adhesives Portfolio

		/	Parmanar	Removable Removable	PSAS And	Protective 1	Asstring Propriet	Adhesive Landshitz	Pad	Speak	Tad /	Edilds (Plo)	No.
Product	Chemistry		Application					Performance		Properties			
EPS® 2121D	All-Acrylic		•	•	•			Low	High	Moderate	50	7.0-8.0	-32
EPS® 2123D	Styrenated Acrylic		٠	•	•			Low	High	Moderate	52	7.0-9.0	-34
EP\$® 2127D	All-Acrylic							High	Moderate	High	60	8.0-9.0	-45
EPS® 2133	All-Acrylic	•	•	•	•	•	•	Moderate	High	High	57	7.0-8.0	-34
EP\$® 2156D	All-Acrylic			•	•			Low	Hìgh	Moderate	55	7.0-9.0	-41
EPS® 2157D	All-Acrylic		•		•			Moderate	High	Moderate	52	6.0-8.0	-40
EPS® 2252*	All-Acrylic							High	Low	High	60	8.0-9.0	-32

D = Low foaming

*Adhesion to low energy substrates

Summary

- The landscape of waterborne acrylic polymers for adhesives and sealants is rapidly evolving.
- Application-specific challenges across markets demand tailored solutions.
- Polymer selection is critical, as it directly influences the performance of the finished product.
- Through smart formulation, polymers can be customized to meet customers' unique needs, driving innovation and value.

Elevate your adhesives with innovative EPS polymers to boost performance

QUESTIONS

Robert Sandoval, Ph.D.
R&D Technical Director
robert.sandoval@eps-materials.com

 $\textbf{EPS}^{\texttt{®}} \text{ samples available at } \underline{\texttt{epscca.com}}$

https://www.linkedin.com/company/eps-materials

Subscribe to our quarterly newsletter

https://pages.epscca.com/subscription-center-eps.html

The data in this presentation represents typical values. Since application variables are a major factor in product performance, this information should serve only as a general guide. EPS assumes no obligation or liability for use of this information.